UNIVERSITEIT TWENTE

Faculteit Elektrotechniek, Wiskunde en Informatica

Exam Measurability and Probability (1915703401) on Wednesday, April 6, 2016, 13:45 – 16:45 hours.

The solutions of the exercises should be clearly formulated and clearly written down. Moreover, you should in all cases include a convincing argument with your answer. With this exam a calculator is **not** permitted. Also a formula sheet is **not** permitted.

1. Let $\Omega = [0, \infty)$. Let \mathcal{F} be the smallest σ -algebra such that

$$\left[\frac{p}{2},\frac{p}{2}+1\right)\in\mathcal{F}$$

for p = 0, 1, 2, ...

a) Show that $\left[0,\frac{1}{2}\right] \in \mathcal{F}$.

Let μ be a measure defined on \mathcal{F} such that

$$\mu\left(\left[\frac{p}{2},\frac{p}{2}+1\right]\right) = \frac{3}{2^{p+1}}$$

for $p = 0, 1, 2, \dots$

b) Determine

$$\mu\left(\left[0,\frac{1}{2}\right)\right).$$

2. Consider the measure space $(\mathbb{R}, \mathcal{M}, m)$. Investigate the convergence of:

$$\lim_{n \to \infty} \int_0^\infty \frac{x + \sin x + 2n}{x^2 + nx} \,\mathrm{d}m$$

If you use any theorems from the book then clearly formulate that theorem.

3. Investigate the convergence of:

$$\lim_{n\to\infty}\int_0^3\frac{x+n+\sin(nx)}{x+n}\,\mathrm{d}x$$

If you use any theorems from the book then clearly formulate that theorem.

4. Let *X* and *Y* be two random variables defined on the probability space (Ω, \mathcal{F}, P) with joint density

$$f_{X,Y}(x,y) = \mathbf{1}_A(x,y), \quad (x,y) \in \mathbb{R}^2,$$

where A is the triangle with corners at (0, 2), (1, 0) and (1, 2).

- a) Find P(X > Y).
- b) Find the conditional density $f_{X|Y}(x|Y = y)$ of X given Y = y.
- c) Determine E(X|Y).

see reverse side

Exam Measurability and Probability (1915703401) on Wednesday, April 6, 2016, 13:45 – 16:45 hours.

5. Let μ and ν be two finite measures on a measurable space (Ω, \mathcal{F}) .

a) What is meant by $\mu(A) \ll \nu(A)$ (μ is absolutely continuous with respect to ν)?

Suppose that, for some a > 0, b > 0, we have $a\mu(A) \le \nu(A) \le b\mu(A)$ for all $A \in \mathcal{F}$.

- b) Show that μ and ν are equivalent measures (that is, $\mu \ll \nu$ and $\nu \ll \mu$).
- c) Show that the respective Radon-Nikodym derivatives $f = d\nu/d\mu$ and $g = d\mu/d\nu$ satisfy $a \le f \le b \mu$ -a.e. and $b^{-1} \le g \le a^{-1} \nu$ -a.e.
- 6. Consider the probability space ([0, 1], $\mathcal{M}_{[0,1]}$, $m_{[0,1]}$). Find F_X , the distribution function, and $\mathbb{E}(X)$, the expectation of
 - a) the random variable *X*, given by $X(\omega) = \max(\omega, 1 2\omega)$,
 - b) the random variable *X* given by $X(\omega) = \min(\omega, 1 \omega^2)$.
- 7. Consider the probability space $([0,1), \mathcal{M}_{[0,1)}, m_{[0,1)})$ and, for $n \in \mathbb{N}$, set

 $X_n(\omega) = \begin{cases} 0 & \text{if } 0 \le \omega < \frac{1}{2} - \frac{1}{2n} \\ n & \text{if } \frac{1}{2} - \frac{1}{2n} \le \omega < \frac{1}{2} \\ \frac{1}{n} & \text{if } \frac{1}{2} \le \omega < 1. \end{cases}$

Which of the following statements are true? (Justify your answers).

- a) $X_n \to 0$ in probability.
- b) $X_n \rightarrow 0$ weakly.
- c) $X_n \rightarrow 0$ almost surely.
- d) $X_n \rightarrow 0$ pointwise.
- e) $X_n \to 0$ in L^1 -norm.
- f) $X_n \rightarrow 0$ uniformly.

For the questions the following number of points can be awarded:

Exercise 1. 8 points Exercise 4. 8 points Exercise 7. 8 points

Exercise 2. 7 points Exercise 5. 8 points

Exercise 3. 7 points Exercise 6. 8 points

The final grade is determined by adding 6 points to the total number of points awarded and dividing by 6.