
Kenmerk: EWI2011/dmmp/001/BM

Exam Optimization Modeling (191581420)

Tuesday April 12, 2011, 8:45 – 11:45 h

• Use of calculators, mobile phones, etc. is not allowed!

• This exam consists of five problems. Please start a new page for every problem.

• Total number of points: 45 + 5 = 50. Distribution of points:

1a: 4 2a: 7 3a: 3 4a: 9 5a: 2
1b: 5 2b: 3 3b: 4 4b: 2 5b: 2

5c: 2
5d: 2

1. Modeling Tricks

Let

f(y) =

{
|y| − 1 if |y| ≥ 1

0 otherwise.

This means that f looks as shown in the following graph.
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(a) Write an LP for the following optimization problem:

minimize f(x1)

subject to Ax ≤ b.

Show that your solution is correct. (An example does not suffice.)

(b) Write a MIP for the following optimization problem:

maximize f(x1)

subject to Ax ≤ b.

Show that your solution is correct. (An example does not suffice.)

Note: The vector x is not restricted to be integer. You can assume that x1 assumes only
values within an interval [−M,M ] for some large M .
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2. Square Packing

In the square packing problem, we are given a large square of side (integer) length W and a
couple of small squares, each of which has a certain (integer) side length. The problem is: Cover
as much area of the large square with the smaller squares.

Notes:

• You have just one copy of each small square available. But, of course, you do not have to
use all squares.

• The small squares are not allowed to overlap.

• If you use a small square, then it must be completely within the large square.

• The large square consists of W×W fields. Any small square fills any field either completely
or not at all.

Example: The following is a covering of a 9 × 9 square with squares of side lengths 2, 2, 2, 2,
2, 2, 3, 3, 3, 3, 3, 4, 4. It is optimal because it covers the whole large square. Note that one
square of side length 2 and one square of side length 4 is not used.

(a) Model the square packing problem as an IP.

Note: Efficiency is not important.

(b) Now assume that the square is in fact a torus. This means that the right-hand side is
identical to the left-hand side and top and bottom are identical. This gives some more
flexibility to position the small stones as they are allowed to “wrap around”. Thus, also the
solution shown below is feasible. (The two gray squares are in fact the same square that is
wrapped around.)

Modify your model from Part (a) such that it handles this variant.
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3. Knapsack

The knapsack problem is the following optimization problem: We are given a bunch of items
1, . . . , n. Item i has value pi and weight wi. We can carry at most weight B in our knapsack.
Thus, our goal is to maximize the sum of the values of the items:

maximize
n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤ B,

x1, . . . , xn ∈ {0, 1}.

(a) Solve the following instance above using branch-and-bound: We have W = 10 and the three
items are specified in the following table.

item value weight

1 3 4
2 5 5
3 9 6

(b) Now consider the following variant of the problem: There is an infinite number of copies
per item. This means that we have to replace x1, . . . , xn ∈ {0, 1} by x1, . . . , xn ∈ N.

Solve this variant of the problem for the following instance using cutting planes. We have
W = 10 and two items, which are specified in the following table.

item value weight

1 3 4
2 9 6

Note: First, solve the relaxation without tableaus. Second, construct the tableau, which is
quite small because there is only one constraint. Do not forget the line for the objective
function. Third, derive a cutting plane from the tableau. Fourth, try to remove the slack
variable from the cutting plane. (This fourth step is not what your solver would do. But it
simplifies things here very much.)
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4. Distribution Network

Consider a computer network consisting of a number of computers. The computers are con-
nected via links. These links are directed and have a bounded capacity.

Now consider the following problem: A video should be broadcasted from one root computer
to a bunch of customer computers. Not all computers are customer computers. Every customer
computer can receive the video but also route it through to other computers.

For every link you use you have to pay a certain non-negative amount that depends on the
link but not on the amount of data you ship through it.

Example: In the network below, the root is drawn as a star, the customers are circles, all
other computers are squares. The right-hand side shows an optimal solution, which has costs
of 14.
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(a) Build an IP model for this problem. Use the following sets (you do not have to use all
indices, and if you need more, you can add some):

• u, v, w: computers

• e, f : links

(b) Now assume that the costs for link are proportional to the number of customer computers
that receive the video through this link. For the solution on the right-hand side above, this
means that the costs are now 17.

Describe briefly how you can model this variant of the problem. (No formal model is
required.)
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5. Questions

Answer the following questions and give a short justification for your answer.

(a) Consider the LP

minimize y

subject to x ≤ 2,

x, y ≥ 0.

Assume that you run the simplex method to solve this problem. Is it possible that simplex
outputs the solution x = 1, y = 0?

(b) Consider the integer program

minimize cTx

subject to Ax = b,

x ∈ Nd.

Let zIP be the objective value of an optimum solution, and let zLP be the objective value
of the relaxation of this IP, i.e., when we replace x ∈ Nd by x ≥ 0. (You can assume that
both zIP and zLP exist, i.e., both LP and IP are neither unbounded nor infeasible.)

Which of the following cases can possibly occur?

(i) zIP < zLP?

(ii) zIP = zLP?

(iii) zIP > zLP?

(c) Consider again the IP of Question (b). Assume that b ∈ Zn and that A is a totally
unimodular.

Which of the following cases can possibly occur?

(i) zIP < zLP?

(ii) zIP = zLP?

(iii) zIP > zLP?

(d) Consider the LP

minimize cTx

subject to Ax = b,

x ≥ 0

and its dual

maximize yTb

subject to yTA ≤ cT.

Prove that for every feasible solutions x for the primal and y for the dual, the objective
value of y is smaller than or equal to the objective value of x.
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