5^{+1} 1090 $Y_{1}=5 = 7^{-3}, 0$ $y_{1}(+2, y_{1}) = 7^{-3}, 10^{-3},$ Time Series Analysis (& SI)-191571090

5th 20-5th

(Lecture notes are allowed)

 $\mathbb{E}(\mathbf{x}_i) \cdot \|$

Date: 31-10-2014 Place: CR-3H Time: 08:45-11:45

1. Two questions:

(a) Suppose $X = (X_1, X_2)$ has covariance matrix

 x_2

 $R_X = \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}, \qquad \begin{array}{c} \sigma_{\chi_1} = 3 \\ \sigma_{\chi_2} = i \end{array}$

Sketch a reasonable scatter plot of (X_1, X_2) of at least 20 points. (An example of a scatter plot is shown above; clearly this is not a reasonable one given our R_{X} .)

 \mathbf{X} (b) Let $X = \mathcal{H}(\epsilon)$ with ϵ_t white noise. If the system \mathcal{H} is LTI and has "peak-to-peak gain" $||h||_1 \le 1$ then the "variance gain" $\operatorname{var}(X_t) / \operatorname{var}(\epsilon_t)$ is ≤ 1 as well?

2. Consider $X = \mathcal{H}(\epsilon)$ defined by the scheme

$$X_t = aX_{t-2} + \epsilon_t + \frac{1}{2}\epsilon_{t-1}.$$

- \mathfrak{A} (a) For which $a \in \mathbb{R}$ is this system asymptotically WSS?
- \mathcal{J} (b) Determine the impulse response h_t
- \mathbf{x} (c) Suppose the scheme is asymptotically WSS. Compute $\|h\|_1$. (The answer still depends on a.)
- (d) Is the scheme invertible?
- le) Suppose the scheme is asymptotically WSS. Determine the <u>TWO</u>-step-ahead predictor scheme

3. Let X_t be the AR(2) process described by $(1-1.6q^{-1}+0.8q^{-2})X_t = \epsilon_t$ and suppose ϵ_t is white noise with variance 17/5.

(a) Show that
$$r_X(0) = 45$$
, $r_X(1) = 40$ and $r_X(2) = 28$

- (b) Suppose we have N = 100 samples $X_1, ..., X_N$ of this process and that we use it to fit an AR(2) scheme $(1 \hat{a}_1 q^{-1} \hat{a}_2 q^{-2})X_t = \hat{\epsilon}_t$ using least-squares and where we assume that $\mathbb{E} X_t = 0$. Can you estimate var (\hat{a}_1) and var (\hat{a}_2) ?
- **4**. Determine the coefficients h_j of the Savitsky-Golay filter

$$\hat{m}_0 = h_{-2}x_{t+2} + h_{-1}x_{t+1} + h_0x_t + h_1x_{t-1} + h_2x_{t-2}$$

for degree 1 polynomial approximation (that is, in the lecture notes in Eqn. (6.8) we take the degree equal to 1.)

5. Let U_t and V_t be two zero mean WSS processes and suppose the two processes are uncorrelated. Assume further that the system \mathcal{H} is LTI. In the notes it is proved that frequency response $\hat{h}(\omega)$ of the system equals

$$\hat{h}(\omega) = \frac{\phi_{yu}(\omega)}{\phi_u(\omega)}$$

0

1

for scheme (a) of the figure below. Does the result also hold for scheme (b) of the figure below? If so, show it. If not, derive a formula for $\hat{h}(\omega)$ in terms of $\phi_{\gamma u}(\omega)$ abd $\phi_{u}(\omega)$.

	6	12	6	4	4	= 32
problem:	1	2	3	4	5	5.
points:	3+3	2+3+2+1+4	3+3	4	4	
Exam grade	e is 1 +	-9 <i>p/p</i> max.				

