Time Series Analysis (& SI)-191571090

(Lecture notes are NOT allowed. For selected formulas see page 3)

Date: 09-11-2012 Place: Time: 08:45-11:45

- 1. True or false (and explain your answer):
 - (a) Let $X_t = \epsilon_{-2t+1} + \epsilon_{2t}$ with ϵ_t white noise. Is X_t wide-sense stationary?
 - (b) Suppose X_t is not white. If the covariance function $r_X(\tau)$ is zero for all lags τ greater than 10, then X_t is not an AR-process?
 - (c) The cross covariance function $r_{yu}(\tau)$ of two jointly wide-sense stationary processes U_t , Y_t is even: $r_{yu}(\tau) = r_{yu}(-\tau)$?
- 2. Let $a, b \in \mathbb{R}$. Suppose ϵ_t is a white noise process with mean zero and variance σ_{ϵ}^2 . Let

 $(1 - aq^{-2})X_t = (1 + bq^{-2})\epsilon_t.$

- (a) For which a, b is X_t is asymptotically wide-sense stationary.
- (b) For which *a*, *b* is this scheme invertible?
- (c) Determine the one-step ahead predictor of X_t (you may assume that a, b is such that the scheme is stable and invertible.)
- (d) Determine the two-step ahead predictor of X_t (you may assume that a, b is such that the scheme is stable and invertible.)
- (e) How would you modify the one-step ahead predictor if the mean of ϵ_t is a nonzero μ ?
- (f) Let a = 1/10. For what values of *b* is the spectral density $\phi_X(\omega)$ nonzero at every frequency?
- 3. What is the definition of a *consistent estimator*?
- 4. Consider the non-stationary process

$$X_t = \frac{\theta}{\sqrt{t}} + \epsilon_t, \qquad t = 1, 2, \dots$$
(1)

where ϵ_t is standard white noise with $\mathbb{E}(\epsilon_t) = 0$, $\mathbb{E}(\epsilon_t) = 1$.

- (a) Given $X_1, ..., X_N$ write (1) in the vector form $X = W\theta + \epsilon$ (i.e. what is W and ϵ ? Notice that X, W, ϵ depend on N.)
- (b) Given $X_1, ..., X_N$, determine the best linear unbiased estimator $\hat{\theta}_N$ (i.e. the linear unbiased estimator that achieves minimal $var(\hat{\theta}_N \theta)$)
- (c) Determine $var(\hat{\theta}_N)$ of the above $\hat{\theta}_N$.
- (d) Compute $\lim_{N\to\infty} \operatorname{var}(\hat{\theta}_N)$. (Hint: $\sum_{n=1}^N 1/n > \log_2(N)$.)

5. Let X_t be a wide-sense stationary process X_t . The lecture notes mentions two reasons why we prefer the standard biased estimator

$$\hat{r}_N(\tau) = \frac{1}{N} \sum_t (x_{t+\tau} - \hat{m}) (x_t - \hat{m})$$

over the standard unbiased estimator

$$\hat{r}_N(\tau) = \frac{1}{N - |\tau|} \sum_t (x_{t+\tau} - \hat{m})(x_t - \hat{m}).$$

What are these two reasons?

6. Suppose X_t is an iid zero mean normally distributed white noise process. How long should we measure before the estimate $var(\hat{r}_N(0))$ has a standard deviation of less than 0.001 of r(0)? [that is: what is the minimal *N* required?]

Suppose next that Z_t is also zero mean normally distributed with the same variance as the above X_t but $r_Z(\tau) > 0$ for all τ . Does it take longer (i.e. does it require larger N) before the same accuracy is obtained?

7. Consider the ARX scheme

$$Y_t = (c_0 + c_1 q^{-1}) U_t + W_t.$$

Suppose we have $(u_0, ..., u_{N-1})$ and $(y_0, ..., y_{N-1})$ for identification.

- (a) Write down the least squares solution of c_1, c_2 in matrix form (you do not have to invert the matrix involved).
- (b) In system identification one says that the input of this ARX scheme is "persistently exciting" if all entries of the two-by-two matrix

$$\left(\frac{1}{N}\begin{bmatrix}u_{1} & u_{0}\\u_{2} & u_{1}\\\vdots & \vdots\\u_{N-1} & u_{N-2}\end{bmatrix}^{T}\begin{bmatrix}u_{1} & u_{0}\\u_{2} & u_{1}\\\vdots & \vdots\\u_{N-1} & u_{N-2}\end{bmatrix}\right)^{-1}$$

are bounded independent of N. Find a nonzero input u_t that is not persistently exciting and argue that it is not a wise input to take.

problem:	1	2	3	4	5	6	7
points:	3+3+3	2+1+3+2+2+1	3	2+2+2+2	3	3	2+3

Exam grade is $1 + 9p/p_{max}$. (Final grade may depend on homework.)