Time Series Analysis (& SI)-191571090

(Lecture notes are NOT allowed. For selected formulas see page 3)

Date: 31-01-2013 Place: CR-3F Time: 13:45–16:45

- 1. Three questions
 - (a) The above figure shows a realization of 200 samples of a WSS process X_t . It was genered by a first-order scheme $(1 aq^{-1})X_t = \epsilon_t$ with ϵ_t white noise with $\mathbb{E}(\epsilon_t) = \mu$ and $\operatorname{var}(\epsilon_t) = \sigma^2$. Based on the realization, which values of a, μ, σ are "reazonable"? (A rough estimate is okay, as long as you explain why they are reasonable)
 - (b) A WSS process X_t has covariance function $r_X(\tau)$. Express the expected value of $(3X_{t+1} 2X_t X_{t-1})^2$ in terms of r_X .
 - (c) Is the cross spectral density $\phi_{yu}(\omega)$ of two jointly WSS processes real-valued?
- 2. Let $b \in \mathbb{R}$. Suppose ϵ_t is a white noise process with mean zero and variance σ_{ϵ}^2 . Let

$$(2-q^{-1}+q^{-2})X_t = (b+q^{-1})\epsilon_t.$$

- (a) For which b is X_t is asymptotically wide-sense stationary.
- (b) For which *b* is this scheme invertible?
- (c) Determine the one-step ahead predictor of X_t (you may assume that *b* is such that the scheme is stable and invertible.)
- (d) Determine the two-step ahead predictor of X_t (you may assume that *b* is such that the scheme is stable and invertible.)
- (e) Determine the spectral density of $X_{t+1} \hat{X}_{t+1|t}$

3. Let $\theta \in \mathbb{R}^m$ and $W \in \mathbb{R}^{N \times m}$. Suppose that the joint density function of

$$X := \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{bmatrix}$$

is

$$f(x) = \frac{1}{(\sqrt{2\pi}\sigma)^N} e^{-\frac{1}{2\sigma^2} \|X - W\theta\|^2}$$

- (a) Determine the Maximum-likelihood estimator of both θ and σ .
- (b) Is $\hat{\theta}$ unbiased?
- (c) Is $\hat{\sigma}$ unbiased?
- (d) Formulate the theorem of Cramer-Rao.
- (e) Is $\hat{\theta}$ efficient?
- 4. Suppose X_t is an iid zero mean normally distributed white noise process. How long should we measure before the estimate $\hat{r}_N(0)$ has a standard deviation of less than $0.01 \times r(0)$? [that is: what is the minimal *N* required?]
- 5. Windowing functions w(k) are even functions defined on [-M, M] (and are zero for $k \notin [-M, M]$). They are used to modify the estimate of the spectral density function.
 - (a) Why are windowing functions even?
 - (b) Why is it beneficial to take *M* "small"?
 - (c) Why is it beneficial to take *M* "large"?
- 6. Consider $Y_t = \sum_{m=-\infty}^{\infty} h_m U_{t-m} + V_t$ and suppose U_t and V_t uncorrelated processes.
 - (a) Prove that $r_y = r_z + r_v$ where $Z_t = \sum_{m=-\infty}^{\infty} h_m U_{t-m}$.
 - (b) If the coherence spectrum $K_{yu}(\omega) = 1/2$ for all frequencies ω , which fraction of the power of *y* is due to *v*?
 - (c) If the coherence spectrum is 1 for $\omega \in [0, 1]$ and zero for $\omega \in (1, \pi]$, in which frequencyband has system identification been successful?

problem:	1	2	3	4	5	6
points:	3+2+2	1+2+3+2+3	3+2+1+3+2	2	2+2+2	3+2+2

Exam grade is $1 + 9p/p_{\text{max}}$. (Final grade may depend on homework.)