
Mastermath and LNMB Course: Discrete Optimization

Solutions for the Exam 9 January 2012
Utrecht University, Educatorium, 15:15–18:15

The examination lasts 3 hours. Grading will be done before January 23, 2012. Students in-
terested in checking their results can make an appointment by e-mail (g.schaefer@cwi.nl).

The examination consists of six problems. The maximum number of points to be gained
on the different parts are displayed in the following table:

1(a)–(j) 2 3(a) 3(b) 3(c) 4 5 6(a) 6(b) 6(c) ∑
20 (2 each) 10 5 5 5 15 15 5 10 10 100

The grade for the exam is obtained by dividing the total number of points by10. This
implies that55 points are needed to pass.

During the examination only the Lecture Notes of the course without any additional
leaflets are allowed to be on your desk and all electronic equipment must be switched
off.

Please be short, clear and precise in your answers. If you useresults from the Lecture
Notes, please provide the respective references. Please hand in your answerstogether
with the exam sheet.

Wishing you a Happy New Year 2012 and Good Luck!

Discrete Optimization: Exam 9 January 2012 Page 1/8

Problem 1 (20 points (2 points each)). State for each of the claims below whether it is
true of false. Note: You need not to justify or proof your answers here.

(a)
√

n = Ω(n).

(b) LetG = (V,E) be a bipartite graph and defineI = {M ⊆ E | M is a matching ofG}.
Then(E,I) is a matroid.

(c) Given a spanning treeT of a graphG = (V,E), let degT(u) refer to the number of
edges inT that are incident tou∈V. Then∑u∈V degT(u) = 2n−1.

(d) A graph is bipartite if and only if it does not contain an odd length cycle.

(e) Given a directed graphG = (V,E) with edge costsc : E → R, one can determine in
polynomial time whetherG contains a cycle of negative cost.

(f) If Π1 ∈ P andΠ2 � Π1, thenΠ2 ∈ P.

(g) If Π1 is NP-complete andΠ1 � Π2, thenΠ2 is NP-complete.

(h) If there exists anNP-complete problemΠ such thatΠ ∈ P, thenP = NP.

(i) If there is a pseudo-polynomial time algorithm for an optimization problemΠ, then
Π ∈ P.

(j) There exists a32-approximation algorithm forTSP.

Solution:

(a) false

(b) false

(c) false

(d) true

(e) true

(f) true

(g) false

(h) true

(i) false

(j) false (unless P= NP)

Problem 2 (10 points). Let M1 = (S,I1) andM2 = (S,I2) be two matroids over the
same ground setS. Theintersection M1∩M2 of M1 andM2 is defined as the independent
set system(S,I1∩I2). Let G = (L∪R,E) be a bipartite graph and define

I = {M ⊆ E | M is a matching ofG}.

Show that the independent set system(E,I) is the intersection of two matroids. (Hint:
An L-sided matchingof G is a subsetM ⊆ E such that each nodeu∈ L has at most one
edge inM incident to it.)

Discrete Optimization: Exam 9 January 2012 Page 2/8

Solution: We first show that the pair(E,IL) with

IL = {M ⊆ E | M is an L-sided matching of G}

constitutes a matroid. First, note that/0∈ IL. Second, let M∈ IL and M′ ⊆ M. Clearly,
because M is an L-sided matching, every node u∈ L has at most one edge in M′ incident
to it. Thus M′ ∈ IL. Finally, let M,M′ ∈ IL and assume|M′| < |M|. Then there is a node
u ∈ L that is matched in M and unmatched in M′. By adding the matching edge e∈ M
incident to u to M′ we obtain a new L-sided matching M+ e∈ IL. Thus,(E,IL) is a
matroid by Definition 3.2 of the Lecture Notes.

We proceed exactly the same way to show that(E,IR) with

IL = {M ⊆ E | M is an R-sided matching of G}

is a matroid. (An R-sided matchingof G is a subset M⊆ E such that each node u∈ R has
at most one edge in M incident to it.)

Finally, we prove that M⊆ E is a matching of G if and only if M∈ IL ∩IR. Clearly,
if M is a matching then M is both an L-sided and an R-sided matching by definition.
To show the converse, suppose for the sake of a contradictionthat M∈ IL ∩IR and M
is not a matching. Because M is not a matching, there must two edges e1 and e2 that
share a common endpoint, say u. Suppose u∈ L (the case u∈ R follows analogously).
But then two edges are incident to u and M is thus not a left-sided matching, which is a
contradiction to the assumption that M∈ IL.

Problem 3 (5+5+5 points). In theminimum-weight edge cover problemwe are given
an undirected graphG = (V,E) with edge weightsw : E → R

+. An edge cover E′ ⊆ E
of G is a subset of the edges such that each nodeu∈V is coveredby at least one edge in
E′, i.e., for every nodeu∈V there is an edge(u,v) ∈ E′. The goal is to compute an edge
coverE′ of minimum total weightw(E′) = ∑e∈E′ w(e).

(a) Formulate theminimum-weight edge cover problemas an integer linear program and
derive the respective LP relaxation.

(b) Show that the set of feasible solutions of this LP is an integral polytope ifG is bipar-
tite.

(c) Give an example that shows that an optimal solution to this LP might be non-integral
if G is not bipartite.

Solution:

(a) The integer programming formulation of the minimum-weight edge cover problem is
as follows: We have an indicator variable xe∈ {0,1} for every edge e∈E with xe = 1

Discrete Optimization: Exam 9 January 2012 Page 3/8

iff e belongs to the edge cover E′.

minimize ∑
e∈E

w(e)xe

subject to ∑
e=(u,v)∈E

xe ≥ 1 ∀u∈V

xe ∈ {0,1} ∀e∈ E

(1)

The LP relaxation is

minimize ∑
e∈E

w(e)xe

subject to ∑
e=(u,v)∈E

xe ≥ 1 ∀u∈V

xe ≥ 0 ∀e∈ E

(2)

Note that the constraints “xe≤ 1 ∀e∈ E” are redundant because of the minimization
objective.

(b) Consider LP(2). We can rewrite this LP as follows:

minwTx s.t. Ax≥ 1, x≥ 0

where A is the incidence matrix of an undirected bipartite graph. By Corollary 8.1 of
the Lecture Notes, A is totally unimodular. As a consequence, −A is also totally uni-
modular (multiplying by−1 does not change the absolute value of the determinant).
Also,−1 is integral and thus the polytope P= {x | −Ax≤−1, x≥ 0} is integral by
Theorem 8.8 of the Lecture Notes.

(c) Consider a cycle of length 3 with every edge having unit weight. An optimal solution
to LP (2) is xe = 1

2 for every edge e∈ E with total weight3
2. This solution is not

integral.

Problem 4(15 points). Consider the followingminimum shortest-path-cut problem: We
are given a directed graphG = (V,E) with edge costsc : E → R

+, a source nodes∈ V
and a target nodet ∈V. The goal is to find a subsetC ⊆ E of minimum cardinality such
that every shortests, t-pathP (with respect toc) is cut byC, i.e.,P∩C 6= /0.

Derive an algorithm that solves this problem, prove its correctness and analyze its running
time.

Solution: The algorithm is as follows:

First note that the algorithm terminates. The correctness of the algorithm follows from
the following lemma:

Lemma 1. P is a shortest s, t-path in G if and only if P is an s, t-path in G′.

Proof. First note that the distance functionδ is well defined because edge costs are non-
negative. SupposeP is a shortests, t-path in G. Then all edges ofP must be tight

Discrete Optimization: Exam 9 January 2012 Page 4/8

Input : A directed graphG = (V,E) with edge costsc : E → R
+, a source node

s∈V and a target nodet ∈V.
Output : SubsetC⊆ E of minimum size that cuts every shortests, t-path.

1 Solve the SSSP problem withs as source node to determine distancesδ (u) for
everyu∈V.

2 Construct the subgraph ofG that contains all tight edges with respect toδ .
Remove from this graph all edges that do not lie on ans, t-path. Let the resulting
graph beG′ = (V,E′).

3 Compute a minimum capacitys, t-cut (X, X̄) (with respect to unit capacities) of
G′ and letC be the set of directed edges fromX to X̄.

4 OutputC.

(Lemma 4.4. of the Lecture Notes) and thusP is part ofG. Next consider an arbitrary
s, t-pathP = 〈s= v1,v2, . . . ,vk = t〉 in G′. The cost of this path is

c(P) =
k−1

∑
i=1

c(vi ,vi+1) =
k−1

∑
i=1

δ (vi+1)−δ (vi) = δ (t)−δ (s) = δ (t).

ThusP is a shortests, t-path.

In light of Lemma 1, the goal now is to determine a subset of edges C⊆ E′ of minimum
cardinality such that after removing C form G′, s and t are disconnected in G′. Let(X, X̄)
be a minimum capacity s, t-cut of G′, where each edge e∈ E′ has unit capacity. Define
C = {(u,v) ∈ E′ | u ∈ X, v ∈ X̄}. By Theorem 5.3 of the Lecture Notes, C cuts every
s, t-path in G′ and has minimum size.

We next analyze the running time of the algorithm: We can use Dijkstra’s algorithm in
Step 1 because edge costs are non-negative. This takes O(m+ nlogn) time. Step 2 re-
quires that we check for every edge e∈ E whether e is tight. This takes time O(m). We
can determine (i) all nodes that are reachable from s and (ii)all nodes from which t is
reachable in time O(n+m) by running one depth-first search from s and one depth-first
search from t (on the graph with all edge directions reversed). Step 2 thus takes O(n+m)
time in total. Computing a minimum capacity s, t-cut in Step 3 can be done by a max-flow
computation (see Theorem 5.3 of the Lecture Notes) which takes time O(nm2) if we use
the Edmonds-Karp algorithm. Identifying the edges in the cut requires O(n+ m) time.
The overall running time of the algorithm is dominated by themax-flow computation and
is thus O(nm2).

Problem 5 (15 points). The decision variant of theknapsack problemis as follows: We
are given a setN = {1, . . . ,n} of n items with each itemi ∈ N having a profitpi ∈ Z

+

and a weightwi ∈ Z
+, a knapsack capacityB ∈ Z

+ and a parameterK ∈ Z
+. The goal

is to determine whether there exists a subsetX ⊆ N such thatw(X) = ∑i∈X wi ≤ B and
p(X) = ∑i∈X pi ≥ K.

Prove that theknapsack problemis NP-complete. (Hint: Use that the followingsubset

Discrete Optimization: Exam 9 January 2012 Page 5/8

sum problemis NP-complete: Givenn non-negative integerss1, . . . ,sn and a parameterL,
determine whether there is a subset of these numbers whose total sum isL.)

Solution: We first argue that knapsack∈ NP. A certificate of a yes-instance is a subset
X of N with w(X) ≤ B and p(X) ≥ K. Both conditions can be checked in linear time (in
n).

In order to prove NP-completeness, we show that subset sum� knapsack. The claim
then follows because the subset sum problem is NP-complete.Let I = (s1, . . . ,sn,L) be
an instance of the subset sum problem. Define an instance I′ of the knapsack problem as
follows: N= {1, . . . ,n} and for every i∈ N: pi = wi = si . Moreover, let B= K = L. This
transformation takes linear time (in n).

We claim that I is a yes-instance of the subset sum problem iffI ′ is a yes-instance of the
knapsack problem. Let S⊆ N such that∑i∈Ssi = L. Then the weight and profit of the
corresponding knapsack X= S is w(X) = B and p(X) = K, respectively. Thus X is a yes-
instance of the knapsack problem. Let X⊆ N be a yes-instance of the knapsack problem.
Then w(X) ≤ B and p(X) ≥ K. Because pi = wi = si for all items i and B= K = L, we
have w(X) = p(X) = L. Thus, with S= X, ∑i∈Ssi = L and thus I is a yes-instance of the
subset sum problem.

Problem 6 (5+10+10 points). A natural greedy algorithm to compute a solution for
theknapsack problemis as follows:

Input : A setN = {1, . . . ,n} of items with a profitpi ∈ Z
+ and a weightwi ∈ Z

+ for
every itemi ∈ N and a knapsack capacityB∈ Z

+.
Output : SubsetX ⊆ N of items.

1 Sort the items by non-increasing profit per weight ratio and re-index the items
such that p1

w1
≥ p2

w2
≥ ·· · ≥ pn

wn
.

2 Let k be the smallest index such that∑k+1
i=1 wi > B.

3 OutputX = {1, . . . ,k}.

(a) Give an example that shows that the approximation ratio of the above algorithm can
be arbitrarily large.

(b) Let OPT be the profit of an optimal solution. Prove that the followingrelation holds:

OPT≤
k

∑
i=1

pi +
B−∑k

i=1wi

wk+1
pk+1.

(Hint: Formulate theknapsack problemas an integer linear program, derive the LP
relaxation and characterize its optimal solutions.)

(c) Obtain a 2-approximation algorithm for theknapsack problemby adapting the above
algorithm and show that the approximation ratio is tight.

Discrete Optimization: Exam 9 January 2012 Page 6/8

Solution:

(a) Suppose we have two items with p1 = 2 and w1 = 1 and p2 = B = w2. The above
greedy algorithm picks item1 with a total profit of2. An optimal solution picks item2
with total profit B. The approximation ratio B/2 becomes arbitrarily large as B→ ∞.

(b) The following is a natural integer linear programming formulation of the knapsack
problem:

maximize
n

∑
i=1

pixi

subject to
n

∑
i=1

wixi ≤ B

xi ∈ {0,1} ∀i ∈ {1, . . . ,n}

(3)

The LP relaxation of(3) is:

maximize
n

∑
i=1

pixi

subject to
n

∑
i=1

wixi ≤ B

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . ,n}

(4)

Note that the constraints “xi ≤ 1 ∀i ∈ {1, . . . ,n}” are not redundant here.
Let OPT and OPTLP refer to the total profit of an optimal solution for(3) and (4),
respectively. Because(4) is the LP relaxation of(3), we haveOPT≤ OPTLP.
We claim the following:

Lemma 2. The following solution x∗ is an optimal solution to LP(4):

x∗i =















1 if i ∈ {1, . . . ,k}
B−∑k

i=1 wi
wk+1

if i = k+1

0 otherwise

Proof. Clearly, 0≤ x∗i ≤ 1 for every i ∈ N and the total weight of the solutionx∗

is ∑i∈N wix∗i = B. Thus,x∗ is feasible. Moreover,x∗ is an optimal solution because
the items are chosen according to non-increasing profit per weight ratio (this follows
from an exchange argument).

We conclude

OPT≤ OPTLP =
n

∑
i=1

pi +
B−∑k

i=1wi

wk+1
pk+1.

(c) We adapt the given algorithm by returning the more profitable set of items among
{1, . . . ,k} and{k+1}.
Note that the algorithm outputs a feasible solution (we assume that wi ≤ B for every
i ∈ N). Moreover, the algorithm has polynomial running time: Sorting the items by
their profit per weight ratio takes O(nlogn). The index k in Step 2 can be determined
in time O(n). Altogether the algorithm needs O(nlogn) time.
It remains to be shown that the algorithm achieves an approximation ratio of2:

Discrete Optimization: Exam 9 January 2012 Page 7/8

The total profit of the solution X output by the algorithm satisfies:

2p(X) ≥
k

∑
i=1

pi + pk+1 ≥ OPT.

Here the second inequality follows from part (b) because

OPT≤
n

∑
i=1

pi +
B−∑k

i=1wi

wk+1
pk+1 ≤

n

∑
i=1

pi + pk+1.

The claim follows.
The following example shows that the approximation ratio of2 is tight: Consider
three items with p1 = 2 and w1 = 1 and p2 = p3 = 1

2B = w2 = w3. The algorithm
selects items1 and2 of total profit 1

2B+2. An optimal solution chooses items2 and
3 of total profit B. Thus the approximation ratio for this instance is B/(1

2B+2) → 2
as B→ ∞.

Discrete Optimization: Exam 9 January 2012 Page 8/8

