Mastermath and LNMB Course: Discrete Optimization

Solutions for the Exam 9 January 2012
Utrecht University, Educatorium, 15:15-18:15

The examination lasts 3 hours. Grading will be done befanadey 23, 2012. Students in-
terested in checking their results can make an appointnyssihail (g.schaefer@cwi.nl).

The examination consists of six problems. The maximum nurabpoints to be gained
on the different parts are displayed in the following table:

[ 1@-() | 2 [3@ 3® 3] 456 60b) 60c)] > |
[20 (2each) 10] 5 5 5 [15]/15] 5 10 10]100]

The grade for the exam is obtained by dividing the total nuntbgoints by10. This
implies that55 points are needed to pass.

During the examination only the Lecture Notes of the courghout any additional
leaflets are allowed to be on your desk and all electronicpegent must be switched
off.

Please be short, clear and precise in your answers. If youesséts from the Lecture
Notes, please provide the respective references. Pleaskimgour answersogether
with the exam sheet.

Wishing you a Happy New Year 2012 and Good Luck!
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Problem 1 (20 points (2 points each)) State for each of the claims below whether it is
true of false Note You need not to justify or proof your answers here.

(8) Vii=Q(n).
(b) LetG = (V,E) be a bipartite graph and defifie= {M C E | M is a matching of5}.
Then(E,Z) is a matroid.

(c) Given a spanning tre€ of a graphG = (V,E), let deg (u) refer to the number of
edges inl that are incident toi € V. Theny oy degr (u) = 2n— 1.

(d) A graph is bipatrtite if and only if it does not contain andddngth cycle.

(e) Given a directed grapB = (V,E) with edge costs : E — R, one can determine in
polynomial time whetheG contains a cycle of negative cost.

() If My € Pandl, <My, thenl, € P.
(g) If My is NP-complete andl, < Iy, thenl, is NP-complete.
(h) If there exists amNP-complete problenil such thafl € P, thenP = NP.

() If there is a pseudo-polynomial time algorithm for aniaptzation problenTT, then
MeP.

() There exists %-approximation algorithm fof SP.

Solution:

(a) false
(b) false
(c) false
(d) true
(e) true
(f) true
(g) false
(h) true
(i) false
() false (unless P= NP)

Problem 2 (10 points) Let My = (S,Z7) andM, = (S Z,) be two matroids over the
same ground s& Theintersection M N M, of M; andMs is defined as the independent
set systentS Z1N7Z,). LetG = (LUR E) be a bipartite graph and define

Z={MCE | Misamatching ofG}.

Show that the independent set systdm7) is the intersection of two matroids. (Hint
An L-sided matchingf G is a subseM C E such that each nodec L has at most one
edge inM incident to it.)
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Solution: We first show that the paiE,Z, ) with

I ={M CE | Mis an L-sided matching of |5

constitutes a matroid. First, note th@tc 7, . Second, let M Z, and M C M. Clearly,
because M is an L-sided matching, every nodeluhas at most one edge in’Nhcident
to it. Thus M € 7. Finally, let MM’ € 7| and assum@V’| < [M|. Then there is a node
u € L that is matched in M and unmatched i .MBy adding the matching edgeceM
incident to u to M we obtain a new L-sided matching Me € Z,. Thus,(E,Z,) is a
matroid by Definition 3.2 of the Lecture Notes.

We proceed exactly the same way to show tBafr) with

7. ={M CE | Mis an R-sided matching of G

is a matroid. (An Rsided matchingf G is a subset MC E such that each nodeaiR has
at most one edge in M incident to it.)

Finally, we prove that MC E is a matching of G if and only if M Z; NZr. Clearly,
if M is a matching then M is both an L-sided and an R-sided matcby definition.
To show the converse, suppose for the sake of a contradittaarM € Z NZg and M
is not a matching. Because M is not a matching, there must tlgese¢ and e that
share a common endpoint, say u. Supposelu(the case e R follows analogously).
But then two edges are incident to u and M is thus not a lefeimatching, which is a
contradiction to the assumption that 87, .

Problem 3(5+5+ 5 points) In theminimum-weight edge cover probleme are given
an undirected grapts = (V,E) with edge weightsv: E — R*. An edge cover EC E

of G is a subset of the edges such that each nod# is coveredby at least one edge in
E’, i.e., for every node €V there is an edgéu,v) € E’. The goal is to compute an edge
coverE’ of minimum total weighiv(E') = ¥ ecpr W(€).

(a) Formulate theninimum-weight edge cover problexs an integer linear program and
derive the respective LP relaxation.

(b) Show that the set of feasible solutions of this LP is aagral polytope ifG is bipar-
tite.

(c) Give an example that shows that an optimal solution ®tR might be non-integral
if Gis not bipatrtite.

Solution:

(&) The integer programming formulation of the minimumeghéiedge cover problem is
as follows: We have an indicator variable& {0,1} for every edge € E with =1
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iff e belongs to the edge covef.E
minimize w(e)Xe
2

subjectto Y x> 1 YueV 1)
e=(uv)eE

Xe € {0,1} VeeE
The LP relaxation is

minimize EEW(G)XE
ec

subject to Xe > 1 YueV (2)
e=(uv)eE

Xe > 0 VeeE

Note that the constraints ‘x< 1 Ve € E” are redundant because of the minimization
objective.

(b) Consider LR[Z). We can rewrite this LP as follows:
minw'x st Ax>1, x>0

where A is the incidence matrix of an undirected bipartitegr. By Corollary 8.1 of
the Lecture Notes, A is totally unimodular. As a consequengées also totally uni-

modular (multiplying by—1 does not change the absolute value of the determinant).

Also,—1is integral and thus the polytopeP {x | —Ax< —1, x> 0} isintegral by
Theorem 8.8 of the Lecture Notes.
(c) Consider a cycle of length 3 with every edge having unigkte An optimal solution

to LP (@) is % = 5 for every edge & E with total Weight%. This solution is not
integral.

Problem 4 (15 points) Consider the followingninimum shortest-path-cut probleive
are given a directed graph = (V, E) with edge costg : E — R™, a source node € V
and a target nodec V. The goal is to find a subs€tC E of minimum cardinality such
that every shortes t-pathP (with respect ta) iscutbyC, i.e.,PNC # 0.

Derive an algorithm that solves this problem, prove itsecimess and analyze its running
time.
Solution: The algorithm is as follows:

First note that the algorithm terminates. The correctneisthe algorithm follows from
the following lemma:

Lemma 1. P is a shortest g-path in G if and only if P is an,$-path in G.

Proof. First note that the distance functidns well defined because edge costs are non-

negative. SupposP is a shortess,t-path inG. Then all edges oP must be tight

Discrete Optimization: Exam 9 January 2012 Page 4/B



Input : A directed graphG = (V, E) with edge costs : E — R ™, a source node
seV and a target nodec V.
Output: SubseC C E of minimum size that cuts every shortedt-path.

1 Solve the SSSP problem wihas source node to determine distana@s) for
everyueV.

2 Construct the subgraph Gfthat contains all tight edges with respectto
Remove from this graph all edges that do not lie orsafpath. Let the resulting
graph beG' = (V,E'). B

3 Compute a minimum capacigyt-cut (X, X) (with respect to unit capacities) of
G’ and letC be the set of directed edges frofrto X.

4 OutputC.

(Lemma 4.4. of the Lecture Notes) and tHiss part of G. Next consider an arbitrary
s,t-pathP = (s=v1,V,,...,w =t) in G'. The cost of this path is

k—1 k—1

c(P) = Z\ c(Vi,Vit1) = Z\ O(Vit1) —O(vi) = d(t) — d(s) = A(t).
ThusP is a shortess, t-path. 0J

In light of LemmadL, the goal now is to determine a subset oée@y E’ of minimum
cardinality such that after removing C forn!,G and t are disconnected inf G_et (X, X)

be a minimum capacity, scut of G, where each edge@E’ has unit capacity. Define
C={(uv)eE | ue X, ve X}. By Theorem 5.3 of the Lecture Notes, C cuts every

s,t-path in G and has minimum size.

We next analyze the running time of the algorithm: We can ugestia’s algorithm in
Step 1 because edge costs are non-negative. This takes-@logn) time. Step 2 re-
quires that we check for every edge & whether e is tight. This takes tim€®). We
can determine (i) all nodes that are reachable from s andafiinodes from which t is
reachable in time @n+ m) by running one depth-first search from s and one depth-first
search fromt (on the graph with all edge directions revejs&dep 2 thus takes(@-+ m)

time in total. Computing a minimum capacity-sut in Step 3 can be done by a max-flow
computation (see Theorem 5.3 of the Lecture Notes) whies tile Qnn?) if we use
the Edmonds-Karp algorithm. Identifying the edges in thierequires Gn+ m) time.
The overall running time of the algorithm is dominated byrieex-flow computation and

is thus @nnv).

Problem 5 (15 points) The decision variant of thienapsack problers as follows: We
are given a selN = {1,...,n} of nitems with each item € N having a profitp; € Z*

and a weightwy; € Z", a knapsack capacifg € Z* and a parametdf ¢ Z*. The goal
is to determine whether there exists a subée&t N such thatw(X) = Sjcxw < B and

P(X) = Tiex pi > K.

Prove that th&knapsack problens NP-complete. (Hint Use that the followingubset
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sum problenis NP-complete: Givem non-negative integers, ..., s, and a parametd,
determine whether there is a subset of these numbers whaseum isL.)

Solution: We first argue that knapsaekNP. A certificate of a yes-instance is a subset
X of N with wX) < B and gX) > K. Both conditions can be checked in linear time (in

n).

In order to prove NP-completeness, we show that subsetsumapsack. The claim
then follows because the subset sum problem is NP-completd.= (sy,...,S,L) be
an instance of the subset sum problem. Define an instdrodfeHe knapsack problem as
follows: N={1,...,n} and for every i€ N: pi =w; = 5. Moreover, let B= K = L. This
transformation takes linear time (in n).

We claim that | is a yes-instance of the subset sum probldmisffa yes-instance of the
knapsack problem. Let S N such thaty;.ss = L. Then the weight and profit of the
corresponding knapsack X S is WX) = B and gX) =K, respectively. Thus X is a yes-
instance of the knapsack problem. Le>N be a yes-instance of the knapsack problem.
Then wX) < B and gX) > K. Because p=w; = s for all items i and B=K =L, we
have WX) = p(X) = L. Thus, with S= X, $icss =L and thus | is a yes-instance of the
subset sum problem.

Problem 6 (5+ 104 10 points) A natural greedy algorithm to compute a solution for
theknapsack probleris as follows:

Input: A setN = {1,...,n} of items with a profitp; € Z™ and a weightv; € Z™ for
every itemi € N and a knapsack capaciBc Z*.
Output: SubseX C N of items.

1 Sort the items by non-increasing profit per weight ratio athdex the items

such that
PLoP2_ P
W1 W2 Wh

2 Letk be the smallest index such trgit' 1w > B.
3 OutputX ={1,...,k}.

(a) Give an example that shows that the approximation rdtibeoabove algorithm can
be arbitrarily large.

(b) LetoPT be the profit of an optimal solution. Prove that the followne¢ation holds:

OPT< le. Z' Szl

(Hint: Formulate theknapsack problemas an integer linear program, derive the LP
relaxation and characterize its optimal solutions.)

(c) Obtain a 2-approximation algorithm for tkeapsack problerby adapting the above
algorithm and show that the approximation ratio is tight.
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Solution:

(@)

(b)

(©)

Suppose we have two items with=p2 and w = 1 and p = B=w,. The above
greedy algorithm picks iterhwith a total profit of2. An optimal solution picks itei2
with total profit B. The approximation ratio/2 becomes arbitrarily large as B- .

The following is a natural integer linear programmingiiaulation of the knapsack
problem:

n
maximize leix;
i=

. (3)
subject to Zwixi <B
i=1
X € {0,1} Vvie{l,...,n}
The LP relaxation of(3) is:
n
maximize Pi X;
2
(@)

n
subject to Zwixi < B
=
0<x <1 Vie{l...,n}

Note that the constraints {x< 1Vi € {1,...,n}"” are not redundant here.

Let oPT and oPT_p refer to the total profit of an optimal solution fdB) and (4),
respectively. Becaudd) is the LP relaxation of(3), we haveoPT < OPT_p.

We claim the following:

Lemma 2. The following solutionkis an optimal solution to LF4):

1 ifi € {1,...,k}
k .
X = i =kt 1
0 otherwise

Proof. Clearly, 0< x* < 1 for everyi € N and the total weight of the solutioxt

IS YienWiX" = B. Thus,x" is feasible. Moreoverx™ is an optimal solution because
the items are chosen according to non-increasing profit peghwratio (this follows
from an exchange argument). 0J

We conclude
c B—5i w
OPT< OPT p= Z pi + —===— Pyt
i= Wi+1
We adapt the given algorithm by returning the more probfagaset of items among
{1,...,k} and{k+1}.
Note that the algorithm outputs a feasible solution (we assthat w < B for every
i € N). Moreover, the algorithm has polynomial running time:rt8g the items by
their profit per weight ratio takes @logn). The index k in Step 2 can be determined
in time Q(n). Altogether the algorithm needs(@ogn) time.
It remains to be shown that the algorithm achieves an appmation ratio of2:
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The total profit of the solution X output by the algorithm shdis:

k
2p(X) = Zpi + Prs1 = OPT.
i=

Here the second inequality follows from part (b) because

lel i
OPT< » P Prkr1 < ) Pi+ Pkt1-
P 52, Pt e

The claim follows.

The following example shows that the approximation rati@ aé tight: Consider
three items with p=2andw =1and p = p3 = %B =Wy = Wws. The algorithm
selects item4 and 2 of total profit 5 1B+ 2. An optimal solution chooses iter@sand

3 of total profit B. Thus the approximation ratio for this instz is B/ (3B +2) — 2
as B— o,
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