
Mastermath and LNMB Course: Discrete Optimization

Solutions for the Exam 30 January 2012
Utrecht University, Buys Ballot Laboratorium, 15:00–18:00

The examination lasts 3 hours. Grading will be done before February 13, 2012. Students
interested in checking their results can make an appointment by e-mail (g.schaefer@cwi.nl).

The examination consists of five problems. The maximum number of points to be gained
on the different parts are displayed in the following table:

1(a)–(j) 2 3(a) 3(b) 4(a) 4(b) 5 ∑

20 (2 each) 15 5 5 15 10 15 85

The grade for the exam is obtained by dividing the total number of points by 8.5. This
implies that 47 points are needed to pass.

During the examination only the Lecture Notes of the course without any additional
leaflets are allowed to be on your desk and all electronic equipment must be switched
off.

Please be short, clear and precise in your answers. If you use results from the Lecture
Notes, please provide the respective references.

Good Luck!

Discrete Optimization: Exam 30 January 2012 Page 1/6

Problem 1 (20 points (2 points each)). State for each of the claims below whether it is
true of false. Note: You need not justify or prove your answers here.

(a) 17n logn = Θ(n2).

(b) Given a spanning tree T of a graph, the number of vertices that have odd degree in T
is even.

(c) The symmetric difference M14M2 of two arbitrary matchings M1 and M2 exclusively
consists of even length cycles and isolated nodes.

(d) If all capacities in the max-flow problem are integers, then there exists a maximum
flow that is integral.

(e) Let T be a minimum spanning tree of a graph G = (V,E) with edge cost c : E → R.
By removing an edge e ∈ T from T , we obtain two trees whose node sets induce a cut
(X , X̄). Every edge e′ that crosses (X , X̄) satisfies c(e′)≥ c(e).

(f) A pseudoflow that satisfies all capacity constraints is a flow.

(g) If Π1 ∈ NP and for every problem Π2 ∈ NP, Π1 �Π2, then Π1 is NP-complete.

(h) If Π1 ∈NP and Π2�Π1 for some NP-complete problem Π2, then Π1 is NP-complete.

(i) The TSP problem in which all edge distances are either 1 or 2 is NP-complete.

(j) Suppose ALG is an α-approximation algorithm for an optimization problem Π whose
approximation ratio is tight. Then for every ε > 0 there is no (α− ε)-approximation
algorithm for Π (unless P = NP).

Solution:

(a) false

(b) true

(c) false

(d) true

(e) true

(f) false

(g) false

(h) true

(i) true

(j) false

Discrete Optimization: Exam 30 January 2012 Page 2/6

Problem 2 (15 points). Consider the maximum weight indegree-bounded subgraph prob-
lem: We are given a directed graph G = (V,E) with edge weights w : E→R+ and degree
bounds b : V → N. The goal is to determine a subset E ′ ⊆ E of maximum total weight
w(E ′) = ∑e∈E ′w(e) such that every node u ∈V has indegree at most b(u).

Prove that the greedy algorithm for matroids solves this problem.

Solution: Define

I = {E ′ ⊆ E | ∀v ∈V, the indegree of v in the graph (V,E ′) is at most b(v)}.

Clearly, I contains all indegree-bounded subgraphs of G with respect to b.

We prove that the pair (E,I) is a matroid. By applying Theorem 3.1 of the Lecture Notes
to (E,I) and w, we can then conclude that the greedy algorithm for matroids solves the
maximum weight indegree-bounded subgraph problem.

We verify thereto that (E,I) satisfies all properties that define a matroid.

◦ E is finite by definition.

◦ (V, /0) is obviously an indegree-bounded subgraph with respect to b.

◦ Let I ∈ I and let J ⊂ I. Then (V, I) is an indegree-bounded subgraph with respect
to b. Because J is a subset of I, for all nodes v ∈ V it holds that the indegree of
v in (V,J) is at most the indegree of v in (V, I). So (V,J) is an indegree-bounded
subgraph with respect to b, and thus J ∈ I.

◦ Let I,J ∈ I, |J| < |I|. Then (V, I) and (V,J) are both indegree-bounded subgraphs
with respect to b. Note that the sum of the indegrees of the vertices in a directed
graph equals the number of edges in that graph. Therefore there is a vertex v whose
indegree in (V, I) is greater than its indegree in (V,J). So there must be an edge
(u,v) ∈ I\J for some u ∈ V . Adding this edge to J only increments the indegree of
v, but still the indegree of v in (V,J∪{(u,v)}) is at most the indegree of v in (V, I),
which is at most b(v). So (V,J ∪{(u,v)}) is an indegree-bounded subgraph with
respect to b, hence J∪{(u,v)} ∈ I.

Problem 3 (5+ 5 points). The Hitchcock problem is as follows: We are given a set of
m sources M = {1, . . . ,m} and a set of n terminals N = {1, . . . ,n}. Every source i ∈ M
has a supply of s(i) ∈ N units and every terminal j ∈ N has a demand of d(j) ∈ N units.
We assume that ∑i∈M s(i) = ∑ j∈N d(j). The cost to send one unit from source i ∈ M to
terminal j ∈N is given by c(i, j)∈R+. An allocation specifies for each pair (i, j)∈M×N
the amount x(i, j) that is sent from i to j. An allocation is feasible if it satisfies the supply
of every source i ∈M and the demand of every terminal j ∈ N. The goal is to compute a
feasible allocation x of minimum total cost ∑(i, j)∈M×N c(i, j)x(i, j).

(a) Formulate the Hitchcock problem as an integer linear program and derive the respec-
tive LP relaxation.

Discrete Optimization: Exam 30 January 2012 Page 3/6

(b) Show that the set of feasible solutions of this LP is an integral polytope.

Solution:

(a) An integer linear programming formulation for this problem is

minimize ∑
(i, j)∈M×N

c(i, j)x(i, j)

subject to ∑
j∈N

x(i, j) ≤ s(i) ∀i ∈M

∑
i∈M

x(i, j) ≥ d(j) ∀ j ∈ N

x(i, j) ∈ N ∀(i, j) ∈M×N

(1)

The LP relaxation is

minimize ∑
(i, j)∈M×N

c(i, j)x(i, j)

subject to ∑
j∈N

x(i, j) ≤ s(i) ∀i ∈M

∑
i∈M

x(i, j) ≥ d(j) ∀ j ∈ N

x(i, j) ≥ 0 ∀(i, j) ∈M×N

(2)

(b) The linear programming relaxation (3) is equivalent to

minimize ∑
(i, j)∈M×N

c(i, j)x(i, j)

subject to ∑
j∈N

x(i, j) ≤ s(i) ∀i ∈M

−∑
i∈M

x(i, j) ≤ −d(j) ∀ j ∈ N

x(i, j) ≥ 0 ∀(i, j) ∈M×N

(3)

Observe that this linear programming formulation is of the form stated in Theorem
8.8 of the Lecture Notes. Also note that the coefficient matrix of this linear program
is the incident matrix of a directed graph (which is even complete bipartite). So
by Corollary 8.1 of the Lecture Notes, the coefficient matrix is totally unimodular.
Therefore, by Theorem 8.8 of the Lecture Notes, the polytope of feasible solutions of
the linear program is integral.

Problem 4 (15+ 10 points). In the longest s, t-path problem we are given a directed
graph G = (V,E) with edge weights w : E → R+, a source node s ∈ V and a target node
t ∈ V . The goal is to compute a simple s, t-path P of maximum total weight w(P) =
∑e∈P w(e).

(a) The decision variant of the problem is to determine whether there exists a simple s, t-
path of total weight at least K, where K is a given parameter. Show that this problem is
NP-complete. (Hint: Use that the Hamiltonian path problem is NP-complete: Given
an undirected graph G, determine whether G contains a Hamiltonian path.)

Discrete Optimization: Exam 30 January 2012 Page 4/6

(b) Show that the longest s, t-path problem in acyclic graphs can be solved in time O(n+
m), where n and m refer to the number of nodes and edges of G, respectively.

Solution:

(a) It is clear that the decision problem is in NP: A certificate for an instance of the
problem is a subset of the edges that forms an s, t-path of a total weight that exceeds
K. Checking whether the total weight of the set of edges exceeds K is obviously
possible in polynomial time. Checking whether a set of edges forms a path can be
done by verifying whether s and t occur in exactly one of the edges of the edge set,
and checking whether all remaining vertices of the graph occur either in 0 or 2 of the
edges of the edge set. It is clear that this is a straightforward procedure that can be
executed in polynomial time.
We next show that the Hamiltonian path problem is polynomial-time reducible to the
longest s, t-path problem. It then follows that the longest s, t-path problem is NP-
complete. The reduction works as follows: Let G = (V,E) be an instance of the
Hamiltonian path problem. Construct from G the instance I = (G′ = (V ′,E ′),w :
E ′→ R+,K,s, t). In this instance, s and t are vertices in V ′\V , V ′ = V ∪{s, t}, and
E ′ = {(u,v),(v,u) | (u,v) ∈ E}∪{(s,u),(u, t) : u ∈ V}. Moreover w is the function
that maps all edges to 1, except those connected to s or t, which are mapped to 0.
Lastly, K is set to |V |−1.
Obviously, this reduction takes polynomial time: Constructing K is a matter of count-
ing the number of vertices in V , taking O(n) time. Specifying s and t and constructing
V ′ from V takes O(1) time. Constructing E ′ requires replacing each edge in E by
two directed edges, and adding two additional edges to each vertex, so this step takes
O(m+n) time.
We prove that G is a yes-instance of the Hamiltonian path problem if and only if I is
a yes-instance of the longest s, t-path problem.
(⇐) Let ((v1,v2),(v2,v3), . . . ,(vn−1,vn)) be a Hamiltonian path for G. Then the
simple path ((s,v1),(v1,v2),(v2,v3), . . . ,(vn−1,vn),(vn, t)) contains |V | − 1 edges of
weight 1, and 2 edges of weight 0, by construction. So it is a simple s, t-path of weight
|V |−1 for G′. So I is a yes-instance of the longest path problem.
(⇒) Suppose that the path ((s,v1),(v1,v2),(v2,v3), . . . ,(vk−1,vk),(vk, t)) (for some
k) is a simple path of weight |V | − 1. The edges (s,v1) and (vk, t) have weight
0, so the path (v1,v2),(v2,v3), . . . ,(vk−1,vk) must have weight |V | − 1. Because
all edges not connected to s or t have weight 1, it must be that k = n. Because
(v1,v2),(v2,v3), . . . ,(vk−1,vk) is a simple directed path of n−1 edges in G′, by con-
struction it is a simple undirected path of n− 1 edges in G. In other words, it is a
Hamiltonian path in G, so G is a yes-instance of the Hamiltonian path problem.

(b) Define a cost function c : E → R as c = −w and consider the graph G with cost
function c. Note that (G,c) does not contain any negative cycles because G is acyclic.
Now, P is a longest s, t-path in (G,w) iff P is a shortest s, t-path in (G,c). We thus
need to compute a shortest s, t-path in (G,c). This can be done in time O(n+m)
using the algorithm of Assignment 2 (Problem 1).

Discrete Optimization: Exam 30 January 2012 Page 5/6

Problem 5 (15 points). Consider the maximum weight acyclic subgraph problem: We
are given a directed graph G = (V,E) with edge weights w : E → R+. The goal is to
determine a subset E ′ ⊆ E of maximum total weight w(E ′) = ∑e∈E ′w(e) such that the
subgraph G′ = (V,E ′) induced by E ′ is acyclic.

Derive a 2-approximation algorithm for this problem and show that its approximation
ratio is tight. (Hint: Assign a unique number r(u) to every node u ∈ V of G. An edge
(u,v) ∈ E is a forward edge if r(u)< r(v). Prove that the set of all forward edges induces
an acyclic subgraph of G.)

Solution: The algorithm is as follows:

Input: A directed graph G = (V,E) with edge weights w : E→ R+.
Output: A subset E ′ ⊆ E such that G′ = (V,E ′) is acyclic.

1 Fix an arbitrary order u1, . . . ,un on the nodes of G and define r(ui) = i.
2 Call an edge (u,v) ∈ E a forward edge if r(u)< r(v) and a backward edge

otherwise. Let F and B be the set of all forward and backward edges, respectively.
3 Let E ′ = F if w(F)> w(B) and E ′ = B otherwise.
4 return E’

We prove that the above algorithm is a 2-approximation for the maximum weight acyclic
subgraph problem.

1. The algorithm has polynomial running time: Defining r(u) for every node u ∈ V
takes O(n) time and identifying all forward and backward edges needs O(m) time.
Altogether the algorithm thus needs O(n+m) time.

2. The algorithm computes a feasible solution: Suppose for the sake of a contradiction
that the subgraph G = (V,E ′) contains a cycle C = (v1,v2, . . . ,vk = v1). Because C
consists only of forward (or backward) edges, we must have r(v1) < r(v2) < · · · <
r(vk) = r(v1) (or r(v1)> r(v2)> · · ·> r(vk) = r(v1)), which is a contradiction.

3. The algorithm computes a 2-approximate solution: Note that F and B partition the
edge set E, i.e., E = F ∪B and F ∩B = /0. Also note that OPT ≤ w(E). Because we
choose the set of larger weight among F and B, we have

2w(E ′)≥ w(F)+w(B) = w(E)≥ OPT.

That is, w(E ′)≥ 1
2 OPT.

The approximation ratio of is tight as the following example shows: Let V = {u1,u2,u3}
and assume that this is the order fixed in Step 1 of the algorithm. Further, let E =
{(u1,u3),(u3,u2)} and w(e) = 1 for both edges. Note that the entire graph is acyclic.
Thus the edge set E is the optimal solution with weight OPT = w(E) = 2. The algorithm,
however, will output the edge set E ′ = {(u3,u2)} with weight w(E ′) = 1.

Discrete Optimization: Exam 30 January 2012 Page 6/6

