Kenmerk: TW2015/BG10

Course : Mathematics β 1 (Leibniz)

Date : October 16, 2015 Time : 13.45 – 15.45 hrs

Motivate all your answers.

The use of electronic devices is not allowed.

1. (a) [3 pt] Solve the following initial value problem:

$$\begin{cases} y' + \frac{2}{x}y = \frac{1}{x^2}, \\ y(1) = 2. \end{cases}$$

(b) [3 pt] Consider the following differential equation:

$$y' = \frac{y}{x} - e^{-y/x} \qquad x > 0$$

Find the solution of this DE by making use of the function v(x) that satisfies y(x) = xv(x).

- 2. (a) [2 pt] Find the modulus (absolute value) and the argument van $w = \frac{4i}{1 + i\sqrt{3}}$.
 - (b) [2 pt] Solve: $z^3 = -8i$.
- 3. [2 pt] Proof: $\overline{zw} = \overline{z} \ \overline{w}$ for every pair of two complex numbers z and w
- 4. [5 pt] Determine the solution of the following second order differential equation:

$$y'' - 4y = xe^x + \cos(2x)$$

- 5. (a) [2 pt] Determine a vector ${\bf n}$ perpendicular to the vectors ${\bf u}=\langle -1,0,6\rangle$ and ${\bf v}=\langle 2,-5,-3\rangle$
 - (b) [3 pt] Proof: Two vectors \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \bullet \mathbf{v} = \pm |\mathbf{u}||\mathbf{v}|$.

Total: 22 points