Course : Answers to Final Examination Introduction to Investment Theory Code : 151560
 Date : November 26, 2003

1. a. Since

$$
\begin{aligned}
\frac{10000}{\left(1+\frac{1}{2} s_{1}\right)^{2}} & =9564.74 \\
\frac{100000}{\left(1+\frac{1}{2} s_{0.5}\right)^{1}} & =98280.10
\end{aligned}
$$

we find that $s_{0.5}=3.500 \%$ and $s_{1}=4.500 \%$
b. We must have that

$$
\left(1+\frac{1}{2} f\right)\left(1+\frac{1}{2} s_{0.5}\right)=\left(1+\frac{1}{2} s_{1}\right)^{2}
$$

so $f=5.505 \%$
c. Since

$$
\frac{p_{f}}{\left(1+\frac{1}{2} s_{0.5}\right)}=\frac{10000}{\left(1+\frac{1}{2} s_{1}\right)^{2}}=9564.74
$$

we find $p_{f}=9732.12$.
d. $D_{\text {portfolio will always be in between }} D_{A}$ and D_{B} so it can never equal $D_{\text {obligations }}$.
e. For example

$$
Q=\frac{0.5 \cdot 20000\left(1+\frac{1}{2} s_{0.5}\right)^{-2}+1.0 \cdot 200000\left(1+\frac{1}{2} s_{1}\right)^{-3}}{20000\left(1+\frac{1}{2} s_{0.5}\right)^{-1}+200000\left(1+\frac{1}{2} s_{1}\right)^{-2}}
$$

f. $\Delta P=-Q \cdot P \cdot 0.01$.
2. a. When investing percentage α in X, portfolio variance is $\alpha^{2}(0.05)^{2}+2 \alpha(1-\alpha) \frac{1}{4}(0.05)(0.10)+$ $(1-\alpha)^{2}(0.10)^{2}$ so minimizing with respect to α gives $\frac{7}{8}$ investment in X and $\frac{1}{8}$ investment in Y.
b. $\operatorname{cov}(X, M)=\beta_{X} \sigma_{M}^{2}=0.0032$ so $\rho_{X M}=\operatorname{cov}(X, M) /\left(\sigma_{X} \sigma_{M}\right)=0.8$
c. This must equal

$$
\frac{\sigma_{X}^{2}-\beta_{X}^{2} \sigma_{M}^{2}}{\sigma_{X}^{2}}
$$

which is 36%.
3. a. Vectors are $(1.25,1.25,0),(2.5,0,2.5)$ and $(1,1,1)$ so state prices are $\psi_{1}=0.2, \psi_{2}=$ $0.6, \psi_{3}=0.2$.
b. Payoff vector $(0,0,1)$ has price $\psi_{3}=0.2$ so if price is to be 1 we should take this vector 5 times so $z=4$.
c. Maximizing

$$
0.6 \ln (1000(1-x)+5000 x)+0.4 \ln (1000(1-x))
$$

gives optimum $x=\frac{1}{2}$.
4. Obviously, there is not just one unique good answer.

