Kenmerk	:	Vellekoop/InvTh/03
Datum	:	25 maart 2005

Course : Answers to Final Examination Introduction to Investment Theory Code : 151560 Date : November 26, 2003

- 1. a. Since

$$\frac{10000}{(1+\frac{1}{2}s_1)^2} = 9564.74$$
$$\frac{100000}{(1+\frac{1}{2}s_{0.5})^1} = 98280.10$$

we find that $s_{0.5} = 3.500\%$ and $s_1 = 4.500\%$

b. We must have that

$$(1 + \frac{1}{2}f)(1 + \frac{1}{2}s_{0.5}) = (1 + \frac{1}{2}s_1)^2$$

so f = 5.505%

c. Since

$$\frac{p_f}{(1+\frac{1}{2}s_{0.5})} \;\; = \;\; \frac{10000}{(1+\frac{1}{2}s_1)^2} \;\; = \;\; 9564.74$$

we find $p_f = 9732.12$.

- d. $D_{\text{portfolio}}$ will always be in between D_A and D_B so it can never equal $D_{\text{obligations}}$.
- e. For example

$$Q = \frac{0.5 \cdot 20000(1 + \frac{1}{2}s_{0.5})^{-2} + 1.0 \cdot 200000(1 + \frac{1}{2}s_{1})^{-3}}{20000(1 + \frac{1}{2}s_{0.5})^{-1} + 200000(1 + \frac{1}{2}s_{1})^{-2}}$$

- f. $\Delta P = -Q \cdot P \cdot 0.01$.
- 2. a. When investing percentage α in X, portfolio variance is $\alpha^2(0.05)^2 + 2\alpha(1-\alpha)\frac{1}{4}(0.05)(0.10) + (1-\alpha)^2(0.10)^2$ so minimizing with respect to α gives $\frac{7}{8}$ investment in X and $\frac{1}{8}$ investment in Y.
 - b. $\operatorname{cov}(X, M) = \beta_X \sigma_M^2 = 0.0032$ so $\rho_{XM} = \operatorname{cov}(X, M) / (\sigma_X \sigma_M) = 0.8$
 - c. This must equal

$$\frac{\sigma_X^2 - \beta_X^2 \sigma_M^2}{\sigma_X^2}$$

which is 36%.

- 3. a. Vectors are (1.25, 1.25, 0), (2.5, 0, 2.5) and (1, 1, 1) so state prices are $\psi_1 = 0.2$, $\psi_2 = 0.6$, $\psi_3 = 0.2$.
 - b. Payoff vector (0, 0, 1) has price $\psi_3 = 0.2$ so if price is to be 1 we should take this vector 5 times so z = 4.
 - c. Maximizing

 $0.6\ln(1000(1-x) + 5000x) + 0.4\ln(1000(1-x))$

gives optimum $x = \frac{1}{2}$.

4. Obviously, there is not just one unique good answer.