Complex Function Theory (191520252)

Thursday, 23 June 2011, 08.45-11.45 am

- An explanation to every answer is required.
- You can make use of calculator.
- Exercise 7 can be skipped in case of homework bonus.

1. (a) Find all $z \in \mathbb{C}$ for which $\operatorname{Re}\left(e^{i z}\right)=\cos (z)$.
(b) For which $z \in \mathbb{C}$ is $\log \left(\frac{z-1}{z+1}\right)$ analytic?
2. Describe the stereographic projection on the Riemann sphere of the following sets.
(a) the disk $\left\{z \in \mathbb{C}:|z|<\frac{1}{2}\right\}$.
(b) the line $\{z \in \mathbb{C}: z=x+i x$ with $x \in \mathbb{R}\}$
3. The function $f(z)$ is analytic on \mathbb{C} with $\operatorname{Re}(f)=u$ and $\operatorname{Im}(f)=v$.
(a) Denote the Cauchy-Riemann equations for u and v. Express $f^{\prime}(z)$ in terms of the partial derivatives of v.
(b) Determine $f(z)$ as a function of z in the case $\frac{\partial v}{\partial x}=12 x y-6 x$ and $f(0)=3-2 i$ and $f^{\prime}(0)=1$ (hint: try first to determine $f^{\prime}(z)$).
4. Find the Laurent series for the function

$$
\frac{z}{(z+1)(z-2)}
$$

in each of following domains
(a) $\{z \in \mathbb{C}:|z|<1\}$
(b) $\{z \in \mathbb{C}: 2<|z|\}$
j. (a) Find and classify the isolated singularities of

$$
f(z)=\frac{e^{z}}{1+e^{3 z}}
$$

(b) Verify with the aid of residues

$$
\int_{-\infty}^{\infty} \frac{e^{x}}{1+e^{3 x}} \mathrm{~d} x=\frac{2 \pi}{3 \sqrt{3}}
$$

(hint: apply the residue theorem for a rectangle with height $\frac{2 \pi}{3}$ which is based on the real axis)
6. Let m be a positive real number. Prove that the Fourier transform of the function

$$
F(t)=\frac{1}{t^{2}+m^{2}}
$$

is given by

$$
G(\omega)=\frac{1}{2 m} e^{-m \omega}
$$

for $\omega>0$.
7. (a) Formulate the 'Argument Principle' for meromorphic functions defined on and inside a simple closed contour.
(b) Prove that the composition of the two Möbius transformations is again a Möbius transformation.

Grading points

1. (a) 3	2 (a) 2	3. (a) 2	4 . (a) 2	5. (a) 3	6.6	7 (a) 2
(b) 3	(b) 2	(b) 3	(b) 2	(b) 4		(b) 2

Total: $36+4=40$ points.

