UNIVERSITEIT TWENTE.

Complex Function Theory Thursday 1 June 2017, 8.45 - 11.45 a.m. Course code 201500405

- An explanation to every answer is required.
- Use of a (graphing) calculator is allowed.
- 1. Solve for $z \in \mathbb{C} \setminus \{0\}$:
 - a) $\sinh(z) \in \mathbb{R}$,
 - b) $z^i = 1$.
- 2. Suppose that f(z) = f(x + iy) = u(x, y) + iv(x, y) is analytic in \mathbb{C} .
 - a) Formulate the Cauchy-Riemann equations for f(z).
 - b) Suppose that g(z) = v(x, y) + iu(x, y) is also analytic in \mathbb{C} . Show that in this case both u(x, y) and v(x, y) are constant.
- 3. The contour Γ is the unit circle |z| = 1, traversed once in the positive sense. Calculate:
 - a) $\int_{\Gamma} \frac{1}{\overline{z}} dz$, b) $\int_{\Gamma} \frac{\cos(z)}{z(z-3)} dz$,

c) $\int_{\Gamma} e^{1/z} \mathrm{d}z.$

P.T.O.

4. Consider

$$f(z) = rac{1}{z(z-1)(z+3)}.$$

This function is expanded in three different Laurent series involving powers of z.

- a) One of the three domains is the annulus $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$. Give the Laurent series for this domain.
- b) One of the Laurent series of f(z) is given by:

$$\sum_{n=-\infty}^{-3} c_n z^n.$$

To which domain belongs this series?

5. Evaluate by means of the Cauchy residue theorem:

p.v.
$$\int_{0}^{\infty} \frac{\mathrm{d}x}{\left(x^2+a^2\right)^2}, \quad \text{with } a > 0.$$

[p.v. is the principle value]

6. Prove that all zeros of $z^4 + z^3 + 1$ are lying in the annulus $\{z \in \mathbb{C} \mid 3/4 < |z| < 3/2\}$.

7. a) Formulate the inverse formula of the Laplace transform

$$\mathcal{L}{F}(s) = \int_{t=0}^{\infty} F(t)e^{-st} \mathrm{d}t$$

of the function F(t).

b) Use this formula to find F(t) in case the Laplace transform of F(t) is given by the function

$$\frac{s}{s^2+4}.$$

End

