UNIVERSITEIT TWENTE.

Complex Function Theory

Thursday 1 June 2017, 8.45 - 11.45 a.m.
Course code 201500405

- An explanation to every answer is required.
- Use of a (graphing) calculator is allowed.

1. Solve for $z \in \mathbb{C} \backslash\{0\}$:
a) $\sinh (z) \in \mathbb{R}$,
b) $z^{i}=1$.
2. Suppose that $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is analytic in \mathbb{C}.
a) Formulate the Cauchy-Riemann equations for $f(z)$.
b) Suppose that $g(z)=v(x, y)+i u(x, y)$ is also analytic in \mathbb{C}. Show that in this case both $u(x, y)$ and $v(x, y)$ are constant.
3. The contour Γ is the unit circle $|z|=1$, traversed once in the positive sense. Calculate:
a) $\int_{\Gamma} \frac{1}{\bar{z}} \mathrm{~d} z$,
b) $\int_{\Gamma} \frac{\cos (z)}{z(z-3)} \mathrm{d} z$,
c) $\int_{\Gamma} e^{1 / z} \mathrm{~d} z$.
4. Consider

$$
f(z)=\frac{1}{z(z-1)(z+3)}
$$

This function is expanded in three different Laurent series involving powers of z.
a) One of the three domains is the annulus $\{z \in \mathbb{C}|0<|z|<1\}$. Give the Laurent series for this domain.
b) One of the Laurent series of $f(z)$ is given by:

$$
\sum_{n=-\infty}^{-3} c_{n} z^{n}
$$

To which domain belongs this series?
5. Evaluate by means of the Cauchy residue theorem:

$$
\text { p.v. } \int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{2}}, \quad \text { with } a>0
$$

[p.v. is the principle value]
6. Prove that all zeros of $z^{4}+z^{3}+1$ are lying in the annulus $\{z \in \mathbb{C}|3 / 4<|z|<3 / 2\}$.
7. a) Formulate the inverse formula of the Laplace transform

$$
\mathcal{L}\{F\}(s)=\int_{t=0}^{\infty} F(t) e^{-s t} \mathrm{~d} t
$$

of the function $F(t)$.
b) Use this formula to find $F(t)$ in case the Laplace transform of $F(t)$ is given by the function

$$
\frac{s}{s^{2}+4}
$$

Grading points

3442

