UNIVERSITEIT TWENTE.

Complex Function Theory Thursday 31 May 2018, 8.45 - 11.45 a.m. Course code 201500405

- An explanation to every answer is required.
- · Use of a (graphing) calculator is allowed.
- 1. a) Find the (largest) domain where $\operatorname{Log}\left(\frac{z-1}{z}\right)$ is analytic.
 - b) Calculate $\frac{d}{dz} \operatorname{Log} \left(\frac{z-1}{z} \right)$ in that domain.
- 2. a) Show that $u(x,y) = x^3 3xy^2 + 2y$ is harmonic in \mathbb{R}^2 .
 - b) Suppose z = x + iy and f(z) is an entire function with Re(f(z)) = u(x, y) and f(1 + i) = i. Find f(z) as a function expressed in z.
- 3. Let f(z) be entire (analytic in the whole plane) and suppose that $Re(f(z)) \leq M$ for all z, where M is a fixed positive number. Prove that f is a constant function.
- 4. Given the function $f(z) = \frac{z}{z^2 9}$.
 - a) Expand f(z) in a Taylor series around z=0 (MacLaurin series). In what disk centered at z=0 is the series convergent?
 - b) Expand f(z) in a Laurent series in powers of z-3 valued in an annular domain containing the point z=0.
- 5. Using the technique of residues, compute

$$p. v. \int_{-\infty}^{\infty} \frac{\cos(3x)}{x-1} dx.$$

[p. v. is the principle value]

- 6. Given the equation $20z^2 + 30 e^z = 0$.
 - a) Show that if z solves the equation, so does \bar{z} .
 - b) Prove that the equation has two solutions inside |z|=2.
- 7. a) Given the smooth function F(t) for $t \ge 0$. Give the formula for the Laplace transform $\mathcal{L}\{F(t)\}$ as well as the formula for the inverse transformation.
 - b) Use the Laplace transform to solve the initial value problem:

$$\left\{ \begin{array}{l} y'' + 2y' + y = 2, \\ y(0) = 1 \text{ and } y'(0) = 1. \end{array} \right.$$

Grading points

1 a: 3	2 a: 1	3: 4	4 a: 3	5: 7	6 a: 1	7 a: 1
b: 1	b: 4		b: 3		b: 5	b: 3

Total: 36 + 4 = 40 points