Re-Exam Complex Function Theory Code 2018-201500405

Date : Thursday, October 10, 2019

Place : CR-3D Time : 08.45 - 10.45

All answers must be motivated. The use of a pocket calculator is not allowed.

- 1. On the non-empty domain Ω the analytic function f is given.
 - $\mathfrak{F}(a)$ Prove that $g(z) := \sin(f(z))$ is analytic on Ω .
- 3 (b) Give necessary and sufficient conditions in terms of f such that g is bounded on Ω .
- 2. Given is the function

$$u(x,y) = -2xy - 5y + i. (1)$$

- 2 (a) Show that u is harmonic on \mathbb{R}^2 .
- Suppose that z = x + iy and f(z) = u(x, y) + iv(x, y), with f entire and u given by (1). Find f(z), as function of z, when additionally it is given that f(0) = 1.
- 4 3. For which $z \in \mathbb{C}$ do we have that $\text{Log}(e^z) = e^{\text{Log}(z)}$?
- J 4. Determine the integral of $\frac{\cos(z)}{z-1}$ along the closed curve $\gamma = \{\frac{e^{2it}}{e^{it}-2} \mid t \in [0, 2\pi]\}$, see Figure 1 for its graph and orientation.

Figure 1: The curve γ .

P.T.O.

- \sim 5. 2 (a) Determine the Taylor series of $\cos(z)$ around z=0.
 - 3 (b) Prove that the function

$$h(z) = \cos(\sqrt{z})$$

is entire. Here \sqrt{z} is obtained via the principle value.

3.6. Let f(z) be given as

$$f(z) = \frac{z^2 \sin(z)}{(z+1)(z+3)}.$$

Determine the integral

$$\int_{C_2} \frac{f'(z)}{f(z)} dz,$$

Principal organent

in file de - VIII-Noll).

where C_2 is the circle, positively oriented, with centre the origin and radius 2.

- 7. Consider the function $f(z) = z^5 e^{z-2}$.
- \rightarrow 3 (a) How many zeros has f within the unit circle?

 $\mathfrak{Z}(b)$ Define for $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$ the strip $S_{\alpha,\beta}$ as

$$S_{\alpha,\beta} := \{ z \in \mathbb{C} \mid \operatorname{Re}(z) \in [\alpha, \beta] \}.$$

Show that there does not exists a strip $S_{\alpha,\beta}$ such that f has infinitely many zeros within $S_{\alpha,\beta}$.

 \rightarrow 28. Determine the following integral

p.v.
$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx. \qquad \frac{e^{it}}{2iz} = \frac{e^{-i2}}{2iz}$$

Points1

Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5		Ex. 6	Ex. 7	Ex. 8
a 3 b 3	a 2 b 3			a b	2 3	3	a (3) b 3	4
3	5					3	3	4

¹Total: 36 + 4 = 40 points