Exam Complex Function theory
Code 201500405

Date : Thursday June 3, 2021
Place : NH-205
Time : 13.45 - 1545

All answers must be motivated.
The use of a pocket calculator or any other electronic equipment is not allowed.

Show. by using the definition, that f(z) is analytic at the origin, where f(z) is given by
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Given is the function

(]

u(r,y) = —2zy + 2z + 5. (1)

(a) Show that u is harmonic on R2.
(b) Suppose that z = z + iy and f(z) = u(z,y) + tv(z,y), with f entire and u given
by (1). Find f(z), as function of z, when additionally it is given that f(0) = 1.

Let a be a complex number. Show that for 2z # 0 the following holds,
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where each power function is given by its principal branch.

Let I" denote the unit circle, i.e., ' = {z € C | |z| = 1}. Does there exists a meromorphic
function f with zero being a pole of f, such that the following holds:

¢ 1(:)dz =0,

If yes, construct such a function. If not, prove why.

5. Picard theorem states that a function with an essential singularity assumes every com-
plex number, with possible one exception, as a value in any neighbourhood of this

singularity.
Verify Picard’s theorem for ¢!/ near z = 0.
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6. Determine the outcome of the following integral
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where I' is the contour drawn in Figure 1

Figure 1: The curve I'. * : i

7. Let g(z) be an entire function, and define 2, = n~! for nié,E Show that
for all n € Z. then g is identically zero. '

8. Determine the integral

e z’ 1
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where P.V. stands for principle value.
9. Suppose that f(z) is analytic on a domain containing the closed un
|z| < 1}, and satisfies |f(z)| < 1 for |z| = 1. [

Show that the equation f(z) = z has exactly one (counting multiplicity)
the open unit disc {z € C | |z| < 1}
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