Exam Complex Function theory Code 201500405

Date : Thursday June 3, 2021

Place : NH-205 Time : 13.45 - 15.45

All answers must be motivated.

The use of a pocket calculator or any other electronic equipment is not allowed.

1. Show, by using the definition, that f(z) is analytic at the origin, where f(z) is given by

$$f(z) = \begin{cases} \frac{\sin(z)}{z} & z \neq 0, \\ 1 & z = 0. \end{cases}$$

2. Given is the function

$$u(x,y) = -2xy + 2x + 5. (1)$$

- (a) Show that u is harmonic on \mathbb{R}^2 .
- (b) Suppose that z = x + iy and f(z) = u(x, y) + iv(x, y), with f entire and u given by (1). Find f(z), as function of z, when additionally it is given that f(0) = 1.
- 3. Let α be a complex number. Show that for $z \neq 0$ the following holds,

$$z^{-\alpha} = \frac{1}{z^{\alpha}},$$

where each power function is given by its principal branch.

4. Let Γ denote the unit circle, i.e., $\Gamma = \{z \in \mathbb{C} \mid |z| = 1\}$. Does there exists a meromorphic function f with zero being a pole of f, such that the following holds:

$$\oint_{\Gamma} f(z)dz = 0.$$

If yes, construct such a function. If not, prove why.

 Picard theorem states that a function with an essential singularity assumes every complex number, with possible one exception, as a value in any neighbourhood of this singularity.

Verify Picard's theorem for $e^{1/z}$ near z = 0.

P.T.O.

6. Determine the outcome of the following integral

$$\int_{\Gamma} \frac{z^2}{z^2 - 1} dz,$$

where Γ is the contour drawn in Figure 1

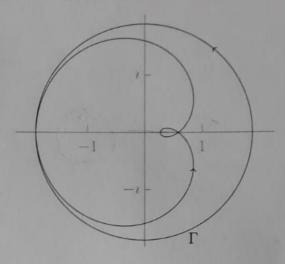


Figure 1: The curve Γ .

- 7. Let g(z) be an entire function, and define $z_n = n^{-1}$ for $n \in \mathbb{Z}$. Show that if $g(z_n) = 0$ for all $n \in \mathbb{Z}$, then g is identically zero.
- 8. Determine the integral

P.V.
$$\int_0^\infty \frac{x^2}{(x^2+1)(x^2+9)} dx$$
, $\frac{1}{2} \cdot \frac{1}{4} \pi = \frac{1}{8} \pi$

where P.V. stands for principle value.

9. Suppose that f(z) is analytic on a domain containing the closed unit disc, $\{z \in \mathbb{C} \mid |z| \leq 1\}$, and satisfies |f(z)| < 1 for |z| = 1.

Show that the equation f(z)=z has exactly one (counting multiplicity) solution inside the open unit disc $\{z\in\mathbb{C}\mid |z|<1\}$.

Points1

Ex. 1	Ex. 2		Ex. 3	Ex. 4	Ex. 5	Ex. 6	Ex. 7	Ex. 8	Ex. 9
3	a	2	3	4	3	5	4	4	4
	b	4			Lance and				No.

 $^{^{1}}$ Total: 36 + 4 = 40 points