Exam Complex Function Theory Code 201500405

Date : Wednesday June 8, 2022

Place : NH-115 Time : 08.45 - 10.45

All answers must be motivated.

The use of a pocket calculator or any other electronic equipment is not allowed.

- 1. On the non-empty domain Ω the function f(z) is defined. Prove that if f and \overline{f} are analytic on Ω , then f is constant.
- 2. Of each of the following statements determine if it is true or not. If it holds, provide a proof, otherwise show that it does not hold, for instance via a counterexample.
 - (a) The function $u(x,y) = x^2 + y^2$ is harmonic.
 - (b) The integral of $f(z) = \frac{1}{z}$ over the half-circle running from -i to i is the same when taking the route via γ_1 or via γ_2 , see Figure 1.
 - (c) The equality $\sqrt{z^2} = z$ holds for all $z \in \mathbb{C}$.

Figure 1: Going left or right, the curves γ_1 and γ_2 going from -i to i.

3. Define the function h(z) by

$$h(z) = \frac{\cos(z) - 1}{z^2} + \frac{1}{z - 1}.$$
 (1)

- (a) Show that h is meromorphic in \mathbb{C} .
- (b) Show that z = 0 is a removable singularity.
- (c) Determine the poles of h and their order.
- (d) Classify the behaviour at ∞ for h.

P.T.O.

4. Determine the integral of $\frac{1}{z(z+1)}$ along the closed curve $\gamma = \{\frac{2e^{2it}}{e^{it}-2} \mid t \in [0,2\pi]\}$, see Figure 2 for its graph and orientation.

Figure 2: The curve γ .

5. Show that f(z) defined via the power series

$$f(z) = \sum_{k=0}^{\infty} \frac{1}{(k!)^2} z^k, \qquad z \in \mathbb{C}$$
 (2)

is an entire function.

6. Let P(z) be a polynomial of degree n. For R>0 we consider the integral

$$I(R) := \oint_{|z|=R} \frac{P'(z)}{P(z)} dz.$$

- (a) Prove that the outcome of the integral is non-decreasing with R.
- (b) Show that $\lim_{R\to\infty} I(R)$ exists and determine its value.
- 7. Determine the integral

p.v.
$$\int_{0}^{\infty} \frac{1}{x^2 - 1} dx$$
,

where p.v. stands for principal value.

8. It is known that the Laplace transform of

$$h(t) = \begin{cases} e^t, & t > 0\\ 0 & t < 0 \end{cases}$$

is given by

$$H(s) = \frac{1}{s-1}$$
 [Re(s) > 1].

Use the formula of the inverse Laplace transform (Bromwich integral) to show that the inverse Laplace transform of H(s) equals h(t) for $t \neq 0$.

Points¹

Ex. 1	1 Ex. 2		Ex. 3		Ex. 4	Ex. 5	Ex. 6		Ex. 7	Ex. 8
3	a b c	2 2 2	a b c d	2 2 2 2	4	3	a b	3 1	4	4

¹Total: 36 + 4 = 40 points