Graph Theory (191520751)
 april 16, 2015, $8.45-11.45 \mathrm{~h}$

Motivate your answers. All graphs are simple.

1. True or false? (Provide arguments! 2 points per item)
a) If G is a simple disconnected graph, its complement G^{c} is connected.
b) A simple graph with n nodes and n edges contains exactly one cycle.
c) A simple connected graph with n nodes and n edges contains exactly one cycle.
d) A simple connected graph with n nodes and $n+1$ edges contains exactly two cycles.
2. Let $T=(V, E)$ be a tree. Show that the following procedure computes a longest path P in T :
Start with a node $u \in V$. Compute a node v at maximum distance from u. Then compute a node w at maximum distance from v. Let P be the path from v to w.
3. Sketch a proof of $\tau\left(K_{n}\right)=n^{n-2}$. ($\tau=$ number of spanning trees.)
4. Show that the d-dimensional cube graph Q_{d} is hamiltonian.
5. State Tutte's Theorem on perfect matchings.

Derive a min-max formula for the size of a maximum matching in a graph G. (No proof required, but you can earn 3 extra points for providing one.)
6. G is a simple 3-regular hamiltonian graph. Show that $\chi^{\prime}(G)=3$.
7. Assume that $\chi(G)=k$. Show that G contains at least k nodes with degree $\geq k-1$.

Points: $36+4=40$

$1: 8$	$2: 5$	$3: 5$	$4: 4$	$5: 5$	$6: 4$	$7: 5$

