Exam Graph Theory (191520751) [•] Tuesday jan 26, 2016, 8.45 – 11.45 uur

All graphs are simple. Motivate your answers.

- Show that a graph G is bipartite if and only if every subgraph H of G contains an independent set of size ν(H)/2. (An *independent set* is a set of pairwise nonadjacent nodes.)
- 2. Let G be a connected graph with at least 3 nodes. Show that there are two (different) nodes x and y at distance $d(x,y) \leq 2$ such that $G \{x, y\}$ is still connected. (Hint: Consider a spanning tree.)
- ***** 3. Show that the k-dim cube graph Q_k is k-connected.
 - 4. G is a simple 3-regular hamiltonian graph. Show that $\chi'(G) = 3$.
- 5. Let G = (V, E) be a graph on *n* vertices. a) Show: If $M \subseteq E$ is a matching and $S \subseteq V$, then

$$|M| \le \frac{1}{2}(n - o(G - S) + |S|).$$

(Reminder: o(G - S) is the number of odd components in $G \setminus S$.)

b) In case G is bipartite and $S \subseteq V$ is a vertex cover, what does the above inequality say?

- 6. Show that a k-critical graph contains at least k nodes of degree $\geq k-1$.
- 7. G is a simple graph on n nodes. Show: $\chi(G) \cdot \chi(G^c) \ge n$. (G^c is the complement of G.)

Points	(36+4=40):	
1 Onus	(30+4=40)	

1: 5	2:	5	3:	5	4:	5	5:	6	6:	5	7:	5
------	----	---	----	---	----	---	----	---	----	---	----	---