Exam Graph Theory (191520751)
 Tuesday jan 26, 2016, 8.45-11.45 uur

All graphs are simple. Motivate your answers.

1. Show that a graph G is bipartite if and only if every subgraph H of G contains an independent set of size $\nu(H) / 2$.
(An independent set is a set of pairwise nonadjacent nodes.)
2. Let G be a connected graph with at least 3 nodes. Show that there are two (different) nodes x and y at distance $d(x, y) \leq 2$ such that $G-\{x, y\}$ is still connected.
(Hint: Consider a spanning tree.)

* 3. Show that the k-dim cube graph Q_{k} is k-connected.

4. G is a simple 3-regular hamiltonian graph. Show that $\chi^{\prime}(G)=3$.

* 5. Let $G=(V, E)$ be a graph on n vertices.
a) Show: If $M \subseteq E$ is a matching and $S \subseteq V$, then

$$
|M| \leq \frac{1}{2}(n-o(G-S)+|S|)
$$

(Reminder: $o(G-S)$ is the number of odd components in $G \backslash S$.)
b) In case G is bipartite and $S \subseteq V$ is a vertex cover, what does the above inequality say?
6. Show that a k-critical graph contains at least k nodes of degree $\geq k-1$.
7. G is a simple graph on n nodes. Show: $\chi(G) \cdot \chi\left(G^{c}\right) \geq n$. (G^{c} is the complement of G.)

Points (36+4=40):

$1:$	5	$2:$	5	$3:$	5	$4:$	5	$5:$	6	$6:$	5	$7:$

