Exam Graph Theory (191520751) Friday april 15, 2016, 13.45 – 16.45 hrs

Motivate your answers.

- 1. Let G be a connected graph with at least 3 nodes. Show that there are two distinct nodes i, j at distance $d_{ij} \leq 2$ such that $G \setminus \{i, j\}$ is (still) connected. [Hint: Consider a spanning tree of G.]
- 2. Assume that G is a simple 5-regular graph with $\kappa(G) = 2$. Show: $\kappa'(G) \leq 4$. [Reminder: κ, κ' are node and edge connectivity, resp.]
- 3. Let G = (V, E) be a simple graph, $M \subseteq E$ a maximum matching and $K \subseteq V$ a minimum node cover. Show that $\frac{|K| \leq |M| \leq 2|K|}{|M| \leq 2|K|}$. IM $|L| |L| \leq 2|M|$ Provide examples for both extreme cases (|K| = |M| and |K| = 2|M|).
- 4. Which labeled tree corresponds to the Prüfer code (4,3,5,3,4,5)? (Reminder: The Prüfer code identifies labeled trees on n nodes with sequences in $\{1, \ldots, n\}^{n-2}$.)
- 5. The number of spanning trees of K_n is known to be $\tau(K_n) = n^{n-2}$. Conclude that $\tau(K_n \setminus e) = (n-2)n^{n-3}$.
- 6. Assume G is a simple graph with $\chi(G) = k$ and consider a fixed proper k-coloring of G. Show that for each color i there is some vertex of color i which is adjacent to all other k 1 colors.
- 7. Give a proof of Euler's formula " $\nu \epsilon + \phi = 2$ " for planar graphs.

Normering (36+4=40):

1.	6	2.	5	3.	5	4.	5	5.	5	6.	5	7.	5
+ •	U	2.	0	0.	0	1.	0	0.	0	υ.	0		0