Exam Graph Theory (191520751)
 Friday april 15, 2016, 13.45 - 16.45 hrs

Motivate your answers.

1. Let G be a connected graph with at least 3 nodes. Show that there are two distinct nodes i, j at distance $d_{i j} \leq 2$ such that $G \backslash\{i, j\}$ is (still) connected.
[Hint: Consider a spanning tree of G.]
2. Assume that G is a simple 5 -regular graph with $\kappa(G)=2$. Show: $\kappa^{\prime}(G) \leq 4$. [Reminder: κ, κ^{\prime} are node and edge connectivity, resp.]
3. Let $G=(V, E)$ be a simple graph, $M \subseteq E$ a maximum matching and $K \subseteq V$ a minimum node cover. Show that $\quad|M| \leq|k|<2|M|$ Provide examples for both extreme cases $(|K|=|M|$ and $|K|=2|M|)$.
4. Which labeled tree corresponds to the Prüfer code (4,3,5,3,4,5)? (Reminder: The Prüfer code identifies labeled trees on n nodes with sequences in $\{1, \ldots, n\}^{n-2}$.)
5. The number of spanning trees of K_{n} is known to be $\tau\left(K_{n}\right)=n^{n-2}$. Conclude that $\tau\left(K_{n} \backslash e\right)=(n-2) n^{n-3}$.
6. Assume G is a simple graph with $\chi(G)=k$ and consider a fixed proper k-coloring of G. Show that for each color i there is some vertex of color i which is adjacent to all other $k-1$ colors.
7. Give a proof of Euler's formula " $\nu-\epsilon+\phi=2$ " for planar graphs.

Normering ($\mathbf{3 6}+4=40$):

$1:$	6	$2:$	5	$3:$	5	$4:$	5	$5:$	5	$6:$	5	$7:$	5

