Graph Theory (191520751)

january 27, 2015, 13.45 - 16.45

Motivate your answers.
 All graphs are simple.

1. Are the following sequences degree sequences of simple graphs?
a) $(5,5,5,3,2,2,1,1)$
b) $(5,5,5,4,2,1,1,1)$
2. Show that $\kappa=\kappa^{\prime}$ holds for 3-regular graphs. (Hint: Case analysis for vertex connectivity $\kappa=0, \ldots, 3$.)
3. Let $G=(V, E)$ be a connected graph with $2 k$ nodes of odd degree. Show: There are k edge disjoint trails T_{1}, \ldots, T_{k} with $E=E\left(T_{1}\right) \cup \ldots \cup E\left(T_{k}\right)$.
4. State Tutte's Theorem on perfect matchings.

Derive a min-max formula for the size of a maximum matching in a graph G. (No proof required.)
5. Let G be a simple k-regular graph with $\kappa(G)=1$. Show that $\chi^{\prime}(G)=k+1$.
6. Prove: $\chi(G)+\chi\left(G^{c}\right) \leq \nu(G)+1$. $\quad(\nu(G)=$ number of vertices in G.) (Hint: Consider a smallest counterexample and argue that both G and its complement G^{c} must be critical.)
7. Given n points in the plane $(n \geq 3)$ such that the distance between any two points is at least 1 . Show that there are at most $3 n-6$ pairs of points at distance exactly one.

Points: $36+4=40$

$1: 5$	$2: 5$	$3: 5$	$4: 5$	$5: 5$	$6: 6$	$7: 5$

