
Solutions Sample Exam

1. a) is a degree sequence. Draw the corresponding graph. (Vertices 1−4 induce a K4.)
b) Vertices 1, 2, 3, 4 must have at least 7 edges (two from each degree 5 vertex, one
from vertex 4) joining them to vertices 5, 6, 7, 8. The latter have total degree only 5.
Contradiction.

2. Cases κ = 0 and κ = 3 are trivial. (The latter because κ ≤ κ′ ≤ δ = 3).

If κ = 1, then let v be a cut vertex whose removal splits G into two (or more) com-
ponents. Then in G, one of these components is joined to v by only one edge (as
dv = 3). Removing this edge disconnects the graph (cf. figure below).

If κ = 2, let {u, v} be a 2-vertex cut whose removal splits G into two (or more)
components. Assume first that u and v are non-adjacent. Then, as in the previous
case, each of u and v is joined to one of the components by only one edge. Removing
these two edges disconnects the graph. Finally, assume that u and v are adjacent.
Then u and v are each joined to both components by only one edge. Removing the
two edges joining u and v to the same component disconnects the graph.

3. Group the 2k odd degree nodes into k pairs (in an arbitrary way). Connect the two
nodes of each pair by an additional edge. (If you want to avoid multiple edges you
may connect them also by paths of length ≥ 2.) The resulting graph has a eulerian
tour. Removing the inserted edges (resp. paths) from the tour gives the desired path
partition E = P1 ∪ ... ∪ Pk.

4. Tutte’s Thm: G = (V,E) has a perfect matching iff
o(G\S) ≤ |S| for every S ⊆ V . (o(G) = number of odd components of G.)

More generally, max o(G\S) − |S| (with max taken over all sets S ⊆ V ) provides
a tight lower bound on the number of nodes that must remain unmatched by any



matching. In other words,

max |M | = 1

2
min{n− (max o(G\S)− |S|)}

.

5. Vizing states that χ′ ∈ {k, k + 1}. Assume that χ′ = k. Then E is a disjoint union
of k perfect matchings. (Each matching consisting of the edges of some some color
i, i = 1, ..., k.)
Now consider a cut vertex v and the perfect matching consisting of all edges of color
1. One of these edges joins v to a component of G\v. The remaining nodes of this
component are completely matched (pairwise) with edges of color 1. We conclude
that this must be an odd component. All other components of G\v must be even
(as these have perfect matchings of color 1). However, the same argument, applied
to an edge of color i joining v to another component of G\v shows that this other
component must be odd, a contradiction.

6. We prove the following slightly more general claim for a graph on n vertices:
If H is a subgraph of G and H ′ is a subgraph of Gc, then χ(H) + χ(H ′) ≤ n+ 1.

Proof: Assume to the contrary that χ(H) + χ(H ′) > n + 1. W.l.o.g. H and H ′

are critical. Say, H is k-critical and H ′ is k′- critical with k + k′ > n + 1. Then H
contains at least k nodes and has min degree δ ≥ k− 1. Similarly, H ′ has at least k′

nodes and min degree δ′ = k′ − 1. As k + k′ > n, there exists a node v that H and
H ′ have in common. So its degree in G is at least k − 1 and its degree in Gc is at
least k′ − 1. Thus n− 1 = dG(v) + dGc(v) ≥ k − 1 + k′ − 1 > n− 1, a contradiction.

7. Draw an edge (straight line segment) between any two points at distance exactly 1.
No two of these intersect each other in an interior point. (For such an intersection
point would divide each edge into two parts, one of which has length at most 1

2
.

As a consequence, two of the points were at distance < 1
2

+ 1
2

= 1, contrary to the
assumption.)
Hence the edges of length 1 define a plane graph G with n nodes, e edges and f faces.
Such a graph has e ≤ 3n − 6. (If you add edges until the graph is a triangulation,
you end up with e = 3n− 6.)

Points: 36+4 = 40
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