Course : Graph Theory

Date : 21 April 2017 Time : 13.45-16.45 uur

Motivate all your answers. The use of electronic devices is not allowed.

In this exam a graph G is a *simple* graph, i.e, G has no loops and two distinct vertices are connected by at most one edge.

1. [5 pt]

Let v be a cut vertex of G. Prove that $G^c - v$ is connected (G^c is the complement of G).

2. [5 pt]

T is a tree. Prove that:

all vertices of T have odd degree if and only if

for each $e \in E(T)$, both components of T - e are odd (an odd component is a component with an odd number of vertices).

3. [6 pt]

Prove that $\kappa(Q_k) = k$, i.e, the *k*-cube is *k*-connected.

4. [5 pt]

M is a maximum matching in a bipartite graph *G*. Prove that: $|M| \ge \frac{\epsilon(G)}{\Delta(G)}$.

5. (a) [2 pt] G is a graph with $\nu = 2n + 1$ and $\varepsilon > n\Delta$. Prove that $\chi' = \Delta + 1$. (b) [3 pt] G is a graph which is obtained from a k-regular graph with an odd number of vertices, by deleting fewer than $\frac{k}{2}$ edges. Prove that $\chi' = \Delta + 1$.

6. [5 pt]

Let G be a graph with the property that each pair of odd cycles in G have a vertex in common. Prove that $\chi(G) \leq 5$.

7. [5 pt]

Let *G* be a bipartite planar graph. Prove that $\delta(G) \leq 3$.

Total: 36 + 4 = 40 points