Course : Graph Theory

Date : 21 April 2017
Time : 13.45-16.45 uur

Motivate all your answers. The use of electronic devices is not allowed.

In this exam a graph G is a simple graph, i.e, G has no loops and two distinct vertices are connected by at most one edge.

1. [5 pt]

Let v be a cut vertex of G.
Prove that $G^{c}-v$ is connected (G^{c} is the complement of G).
2. [5 pt]
T is a tree. Prove that:
all vertices of T have odd degree if and only if
for each $e \in E(T)$, both components of $T-e$ are odd (an odd component is a component with an odd number of vertices).
3. [6 pt]

Prove that $\kappa\left(Q_{k}\right)=k$, i.e, the k-cube is k-connected.
4. [5 pt]
M is a maximum matching in a bipartite graph G. Prove that: $\quad|M| \geq \frac{\epsilon(G)}{\Delta(G)}$.
5. (a) $[2 \mathrm{pt}] \quad G$ is a graph with $\nu=2 n+1$ and $\varepsilon>n \Delta$. Prove that $\chi^{\prime}=\Delta+1$.
(b) $[3 \mathrm{pt}] \quad G$ is a graph which is obtained from a k-regular graph with an odd number of vertices, by deleting fewer than $\frac{k}{2}$ edges.
Prove that $\chi^{\prime}=\Delta+1$.
6. [5 pt]

Let G be a graph with the property that each pair of odd cycles in G have a vertex in common. Prove that $\chi(G) \leq 5$.
7. [5 pt]

Let G be a bipartite planar graph. Prove that $\delta(G) \leq 3$.

Total: $36+4=40$ points

