Exam Graph Theory (191520751) Monday, april 15, 2019, 13.45 – 16.45 hrs

Motivate your answers.

- 1. Let G = (V, E) be a graph with minimum degree $\delta \geq k$. Show that G must contain a path of length k.
- 2. Let G = (V, E) be a triangle-free graph on 2k vertices. Show that G has at most k^2 edges.
- \mathfrak{F} . Let G be a graph. Show that either G or its complement G^c is connected. Does this also hold for 2-connectedness?
- 4. Use Tutte's Theorem to prove the following result: $\circ(G-S) \leq |S|$ Theorem (König): A bipartite graph G = (V, E) has a perfect matching if and only if there is no vertex cover $S \subseteq V$ of size less than |V|/2.
- Show that $\chi' = \Delta$ for regular bipartite graphs. You may use König's Theorem from Exercise 4.
- Let G = (V, E) be critical (i.e., k-critical for some k).
 Show: If S = {u, v} is a vertex cut then uv ∉ E.
 [Provide a direct proof without using any results from the book.]
- 7. Let G be planar with minimum degree $\delta \geq 3$ and at most 11 faces. Conclude that G must have a face of degree at most 4.

Points (36+4=40):

1:	5	2:	5	3:	5	4:	6	5:	5	6:	5	7:	5
									_	-	_		_