Exam Graph Theory (191520751) Tuesday, july 9, 2019, 8.45 – 11.45 hrs

All graphs are simple. Motivate your answers.

- 1. Is (7,6,5,4,3,2,1,1) the degree sequence of a simple graph?
- 2. Let G=(V,E) be a graph with minimum degree $\delta \geq 2$. Show that there G or its complement G^c must be 2-connected.
 - 3. Let $M \subseteq E$ be a matching in G = (V, E). Show that M is a maximum matching if and only if G contains no M-augmenting path.
 - 4. Assume G is k-regular on an odd number of nodes. Show that $\chi'(G) = k + 1$.
 - 5. Assume $\chi(G) = k$. Show that G has at least k nodes of degree $\geq k-1$.
 - 6. Compute the chromatic polynomial $\pi_k(G)$ for the graph G obtained from K_n by removing two edges.
 - 7. Let G be planar with minimum degree $\delta \geq 3$ and at most 11 faces. Conclude that G must have a face of degree at most 4.

Points (36+4=40):

5	2.	C	0	-		-						
 J	4.	O	.5:		1.	5	5:	5		_	-	
				0	I.	0	J.	O.	0:		1.	5