Examination: Mathematical Programming I (191580250)

July 1, 2011, 8.45 -11.45

- **Ex.1** Prove the following statements.
 - (a) Let $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$ be a positive definite matrix. Then \mathbf{A} is regular and also the inverse \mathbf{A}^{-1} is positive definite.
 - (b) For a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ show: The matrix $\mathbf{B} := \mathbf{A} \cdot \mathbf{A}^T$ is positive semidefinite. Moreover, **B** is positive definite if and only if the matrix **A** has rank *n* (*i.e.*, the rows of **A** are linearly independent).

Ex.2

(a) Show that the following system does *not* have any feasible solution.

x_1	+	$2x_2$	+	$3x_3$	\leq	-1
$-2x_1$	+	x_2			\leq	2
		$-5x_{2}$	_	$6x_3$	\leq	-1

(b) Consider the pair of primal and dual linear programs,

$$\begin{aligned} \mathbf{P} : & \max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x} \quad \text{s.t.} \quad \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ \mathbf{D} : & \min_{\mathbf{y} \in \mathbb{R}^m} \mathbf{b}^T \mathbf{y} \quad \text{s.t.} \quad \mathbf{A}^T \mathbf{y} = \mathbf{c} \ , \quad \mathbf{y} \geq \mathbf{0} \ , \end{aligned}$$

where A is an $(m \times n)$ -matrix $(m \ge n)$ and $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$. Let v_P denote the maximum value of the primal program P and v_D the minimum value of the dual problem D. The feasible sets of P and D are abbreviated by F_P and F_D . Suppose the feasible set F_P is not empty $(F_P \ne \emptyset)$. Show that then we have

 $F_D = \emptyset$ if and only if $v_P = \infty$.

Ex.3 Let $S^{n \times n} := \{ \mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A} \text{ is symmetric} \}.$

- (a) Show that for fixed \overline{x} the function $g(A) := \overline{x}^T \mathbf{A}\overline{x}$ is a convex function (on $S^{n \times n}$). (*Note:* g is even linear in \mathbf{A})
- (b) Consider now the function $f: S^{n \times n} \to \mathbb{R}$, defined by:

$$f(\mathbf{A}) = \max_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^T \mathbf{x} = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}$$

Show that $f(\mathbf{A})$ is a convex function (on $S^{n \times n}$). (Is the function f well-defined?, *i.e.*, is for given **A** the maximum value attained?) **Ex. 4** Let $f : \mathbb{R}^n \to \mathbb{R}$, be a C^1 -function on \mathbb{R}^n . Show that f is convex if and only if the following inequality holds:

$$(\nabla f(x) - \nabla f(x')) (x - x') \ge 0$$
 for all $x, x' \in \mathbb{R}^n$.

Hint: For " \Leftarrow *" use the mean-value relation:* $f(x) - f(x') = \nabla f(x' + \lambda(x - x'))(x - x')$ for some $\lambda \in (0, 1)$.

Ex.5 Given the function $f(\mathbf{x}) = x_1^4 + x_2^4 - 4x_1x_2 + 2$.

- (a) Determine the critical points and the local minimizer(s) of f.
- (b) Does there exist a global minimizer (on \mathbb{R}^n).

Ex. 6 We wish to find the minimizer of the quadratic function $q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x}$ with positive definite matrix \mathbf{A} .

- (a) Show that for any starting point \mathbf{x}_0 the Newton method finds the minimizer of q in one step.
- (b) Let us apply the Quasi-Newton method. Suppose that this method produces the iterates x_k , the search directions \mathbf{d}_k and the matrices \mathbf{H}_k , k = 0, 1, ... Show that the relation holds:

$$\mathbf{H}_{k}^{-1}d_{j} = \mathbf{A}d_{j}$$
, for all $j = 0, ..., k-1$,

and after *n* steps we have $\mathbf{H}_n = A^{-1}$. *Hint: Use the relation* $\mathbf{H}_k \boldsymbol{\gamma}_j = \boldsymbol{\delta}_j, \ 0 \le j \le k - 1$ where $\boldsymbol{\gamma}_j = \mathbf{g}_{j+1} - \mathbf{g}_j, \ \boldsymbol{\delta}_j = \mathbf{x}_{j+1} - \mathbf{x}_j$.

Points: 36+4 = 40

Ex. 1	а	:	3 pt.				
2	b	•	3 pt	Ex. 4	а	:	6 pt.
E. 2	0	•	2 pt.	Ex. 5	а	:	4 pt.
EX. Z	a 1	•	5 pt.		b	:	2 pt.
	b	:	3 pt.	Ev. 6	0) nt
Ex. 3	а	:	2 pt.	EX. 0	a 1	·	2 pt.
	b	:	4 pt.		b	:	4 pt.

The scipt 'Mathematical Programming I' and a copy of the lecturesheets may be used during the examination. Good luck!