Examination: Mathematical Programming I (191580250)

July 1, 2011, 8.45-11.45

Ex. 1 Prove the following statements.
(a) Let $\mathbf{A}=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a positive definite matrix. Then \mathbf{A} is regular and also the inverse \mathbf{A}^{-1} is positive definite.
(b) For a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ show: The matrix $\mathbf{B}:=\mathbf{A} \cdot \mathbf{A}^{T}$ is positive semidefinite. Moreover, \mathbf{B} is positive definite if and only if the matrix \mathbf{A} has rank n (i.e., the rows of \mathbf{A} are linearly independent).

Ex. 2

(a) Show that the following system does not have any feasible solution.

$$
\begin{array}{rlr}
x_{1}+2 x_{2}+3 x_{3} & \leq-1 \\
-2 x_{1}+ & x_{2} & \\
-5 x_{2} & -6 x_{3} & \leq-1 \\
& \leq
\end{array} .
$$

(b) Consider the pair of primal and dual linear programs,

$$
\begin{array}{llll}
\text { P: } & \max _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{c}^{T} \mathbf{x} & \text { s.t. } & \mathbf{A x} \leq \mathbf{b} \\
\text { D: } & \min _{\mathbf{y} \in \mathbb{R}^{m}} \mathbf{b}^{T} \mathbf{y} & \text { s.t. } & \mathbf{A}^{T} \mathbf{y}=\mathbf{c}, \quad \mathbf{y} \geq \mathbf{0}
\end{array}
$$

where \mathbf{A} is an $(m \times n)$-matrix $(m \geq n)$ and $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$. Let v_{P} denote the maximum value of the primal program P and v_{D} the minimum value of the dual problem D . The feasible sets of P and D are abbreviated by F_{P} and F_{D}. Suppose the feasible set F_{P} is not empty $\left(F_{P} \neq \emptyset\right)$. Show that then we have

$$
F_{D}=\emptyset \quad \text { if and only if } \quad v_{P}=\infty
$$

Ex. 3 Let $S^{n \times n}:=\left\{\mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A}\right.$ is symmetric $\}$.
(a) Show that for fixed \bar{x} the function $g(A):=\bar{x}^{T} \mathbf{A} \bar{x}$ is a convex function (on $S^{n \times n}$). (Note: g is even linear in \mathbf{A})
(b) Consider now the function $f: S^{n \times n} \rightarrow \mathbb{R}$, defined by:

$$
f(\mathbf{A})=\max _{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{T} \mathbf{x}=1} \mathbf{x}^{T} \mathbf{A} \mathbf{x}
$$

Show that $f(\mathbf{A})$ is a convex function (on $S^{n \times n}$).
(Is the function f well-defined?, i.e., is for given \mathbf{A} the maximum value attained?)

Ex. 4 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, be a C^{1}-function on \mathbb{R}^{n}. Show that f is convex if and only if the following inequality holds:

$$
\left(\nabla f(x)-\nabla f\left(x^{\prime}\right)\right)\left(x-x^{\prime}\right) \geq 0 \quad \text { for all } x, x^{\prime} \in \mathbb{R}^{n}
$$

Hint: For " \Leftarrow " use the mean-value relation:
$f(x)-f\left(x^{\prime}\right)=\nabla f\left(x^{\prime}+\lambda\left(x-x^{\prime}\right)\right)\left(x-x^{\prime}\right)$ for some $\lambda \in(0,1)$.

Ex. 5 Given the function $f(\mathbf{x})=x_{1}^{4}+x_{2}^{4}-4 x_{1} x_{2}+2$.
(a) Determine the critical points and the local minimizer(s) of f.
(b) Does there exist a global minimizer (on \mathbb{R}^{n}).

Ex. 6 We wish to find the minimizer of the quadratic function $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}$ with positive definite matrix \mathbf{A}.
(a) Show that for any starting point \mathbf{x}_{0} the Newton method finds the minimizer of q in one step.
(b) Let us apply the Quasi-Newton method. Suppose that this method produces the iterates x_{k}, the search directions \mathbf{d}_{k} and the matrices $\mathbf{H}_{k}, k=0,1, \ldots$. Show that the relation holds:

$$
\mathbf{H}_{k}^{-1} d_{j}=\mathbf{A} d_{j}, \text { for all } j=0, \ldots, k-1
$$

and after n steps we have $\mathbf{H}_{n}=A^{-1}$.
Hint: Use the relation $\mathbf{H}_{k} \boldsymbol{\gamma}_{j}=\boldsymbol{\delta}_{j}, 0 \leq j \leq k-1$ where $\gamma_{j}=\mathbf{g}_{j+1}-\mathbf{g}_{j}, \boldsymbol{\delta}_{j}=\mathbf{x}_{j+1}-\mathbf{x}_{j}$.

Points: $\quad 36+4=\mathbf{4 0}$

The scipt 'Mathematical Programming I' and a copy of the lecturesheets may be used during the examination. Good luck!

