Re-Examination: Mathematical Programming I (191580250)

Juli 22, 2015, 8.45-11.45

Ex. 1 Let A, $\mathbf{B} \in \mathbb{R}^{n \times n}$ be symmetric matrices and let $\mathbf{Q} \in \mathbb{R}^{n \times n}$ be a non-singular matrix such that

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \mathbf{B}.$$

Show that A is positive semidefinite if and only B is positive semidefinite.

Ex.2 Consider the linear program in \mathbb{R}^2 :

			$-x_1 \leq 0$
(P)	$\max_{\mathbf{c}} \mathbf{c}^T \mathbf{x}$	s.t.	$-x_2 \le 0$
	$\mathbf{x} \in \mathbb{R}^2$		$r_1 + r_2 < 2$

with $c = (2, 1)^T$.

- (a) Sketch the feasible set of P and show that the point $\overline{x} = (2, 0)^T$ is a solution of P.
- (b) Give all solutions of P for the case that instead of $\mathbf{c} = (2, 1)^T$ we choose $\mathbf{c} = (1, 1)^T$.

Ex. 3 With $S^{n \times n} := \{ \mathbf{A} \mid \mathbf{A} \in \mathbb{R}^{n \times n} \text{ is symmetric} \}$, consider the function $f : S^{n \times n} \to \mathbb{R}$, defined by:

$$f(\mathbf{A}) = \max_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^T \mathbf{x} = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}$$
.

Show that $f(\mathbf{A})$ is a convex function.

Ex. 4 Let $f : \mathbb{R}^n \to \mathbb{R}$, be a C^1 -function. Show that f is convex if and only if the following inequality holds:

$$\left(
abla f(x) -
abla f(x')
ight)^T (x - x') \ge 0 \quad \text{for all } x, x' \in \mathbb{R}^n \; .$$

(*Hint: For "* \Leftarrow " use the mean-value relation: $f(x) - f(x') = \nabla f(x' + \lambda(x - x'))^T (x - x')$ for some $\lambda \in (0, 1)$. Also recall that $\nabla f(x)$ is a column vector.

Ex. 5 Given the function $f(\mathbf{x}) = \frac{1}{2}x_1^4 + 2x_1x_2 + 2x_1 + (1+x_2)^2$

(a) Determine the critical points and the local minimizer(s) of f.

(b) Does there exist a global minimizer of f (on \mathbb{R}^n).

1

Ex. 6 We wish to find the minimizer of the quadratic function $q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x}$ with - positive definite matrix **A**.

- (a) Show that for any starting point x_0 the Newton method finds the minimizer of q in one step.
- (b) Let us apply the Quasi-Newton method. Suppose that this method produces the iterates x_k , the search directions d_k and the matrices H_k , k = 0, 1, ... Show that the relation holds:

$$\mathbf{H}_k^{-1}d_j = \mathbf{A}d_j$$
, for all $j = 0, \dots, k-1$,

and after *n* steps we have $\mathbf{H}_n = A^{-1}$.

Hint: Use the relation $\mathbf{H}_k \boldsymbol{\gamma}_j = \boldsymbol{\delta}_j, \ 0 \le j \le k-1$ where $\boldsymbol{\gamma}_j = \mathbf{g}_{j+1} - \mathbf{g}_j, \ \boldsymbol{\delta}_j = \mathbf{x}_{j+1} - \mathbf{x}_j$.

Normering:

1 a : 5	2	a	1	4	3	a :	5	4	a		7	5	a	•	4	6	a	:	3	
			b	:	2									b	:	2		b٩	:	4
	a :	a : 5	a : 5 2	a : 5 2 a b	a:52a: b:	a : 5 2 a : 4 b : 2	a : 5 2 a : 4 3 b : 2	a : 5 2 a : 4 3 a : b : 2	a : 5 2 a : 4 3 a : 5 b : 2	a : 5 2 a : 4 3 a : 5 4 b : 2	a : 5 2 a : 4 3 a : 5 4 a b : 2	a : 5 2 a : 4 3 a : 5 4 a : b : 2	a : 5 2 a : 4 3 a : 5 4 a : 7 b : 2	a : 5 2 a : 4 3 a : 5 4 a : 7 5 b : 2	a : 5 2 a : 4 3 a : 5 4 a : 7 5 a b : 2 b : 6 b b b b b b b b b b b b b b b b b	a : 5 2 a : 4 3 a : 5 4 a : 7 5 a : b : 2 b : b : b :	a : 5 2 a : 4 3 a : 5 4 a : 7 5 a : 4 b : 2 b : 2 b : 2 b : 2	a : 5 2 a : 4 3 a : 5 4 a : 7 5 a : 4 6 b : 2 b : 2	a : 5 2 a : 4 3 a : 5 4 a : 7 5 a : 4 6 a b : 2 b · b · b · b · b · b · b · b · b · b	a : 5 2 a : 4 3 a : 5 4 a : 7 5 a : 4 6 a : b : 2 b : 2 b : b : 2 b :

The scipt 'Mathematical Programming I' may be used during the examination. Good luck!