Re-Examination: Mathematical Programming I (191580250)

Juli 22, 2015, 8.45-11.45

Ex. 1 Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ be symmetric matrices and let $\mathbf{Q} \in \mathbb{R}^{n \times n}$ be a non-singular matrix such that

$$
\mathbf{Q}^{T} \mathbf{A Q}=\mathbf{B}
$$

Show that \mathbf{A} is positive semidefinite if and only \mathbf{B} is positive semidefinite.
Ex. 2 Consider the linear program in \mathbb{R}^{2} :

$$
\begin{array}{lllrl}
& & & -x_{1} \leq 0 \\
& \max _{\mathbf{x} \in \mathbb{R}^{2}} \mathbf{c}^{T} \mathbf{x} & \text { s.t. } & \begin{aligned}
-x_{2} & \leq 0 \\
x_{1}+x_{2} & \leq 2
\end{aligned}
\end{array}
$$

with $\mathbf{c}=(2,1)^{T}$.
(a) Sketch the feasible set of P and show that the point $\overline{\boldsymbol{x}}=(2,0)^{T}$ is a solution of P.
(b) Give all solutions of P for the case that instead of $\mathbf{c}=(2,1)^{T}$ we choose $\mathrm{c}=(1,1)^{T}$.
$\longrightarrow \mathbf{E x . ~} 3$ With $S^{n \times n}:=\left\{\mathbf{A} \mid \mathbf{A} \in \mathbb{R}^{n \times n}\right.$ is symmetric $\}$, consider the function $f:$ $S^{n \times n} \rightarrow \mathbb{R}$, defined by:

$$
f(\mathbf{A})=\max _{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{T} \mathbf{x}=1} \mathbf{x}^{T} \mathbf{A} \mathbf{x}
$$

Show that $f(\mathbf{A})$ is a convex function.
Ex. 4 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, be a C^{1}-function. Show that f is convex if and only if the following inequality holds:

$$
\left(\nabla f(x)-\nabla f\left(x^{\prime}\right)\right)^{T}\left(x-x^{\prime}\right) \geq 0 \quad \text { for all } x, x^{\prime} \in \mathbb{R}^{n}
$$

(Hint: For " \Leftarrow " use the mean-value relation:
$f(x)-f\left(x^{\prime}\right)=\nabla f\left(x^{\prime}+\lambda\left(x-x^{\prime}\right)\right)^{T}\left(x-x^{\prime}\right)$ for some $\lambda \in(0,1)$.
Also recall that $\nabla f(x)$ is a column vector.
Ex. 5 Given the function $f(\mathbf{x})=\frac{1}{2} x_{1}^{4}+2 x_{1} x_{2}+2 x_{1}+\left(1+x_{2}\right)^{2}$
(a) Determine the critical points and the local minimizer(s) of f.
(b) Does there exist a global minimizer of f (on \mathbb{R}^{n}).

Ex. 6 We wish to find the minimizer of the quadratic function $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A x}+\mathbf{b}^{T} \mathbf{x}$ with - positive definite matrix \mathbf{A}.
(a) Show that for any starting point \mathbf{x}_{0} the Newton method finds the minimizer of q in one step.
(b) Let us apply the Quasi-Newton method. Suppose that this method produces the iterates x_{k}, the search directions \mathbf{d}_{k} and the matrices $\mathbf{H}_{k}, k=0,1, \ldots$. Show that the relation holds:

$$
\mathbf{H}_{k}^{-1} d_{j}=\mathbf{A} d_{j}, \text { for all } j=0, \ldots, k-1,
$$

and after n steps we have $\mathbf{H}_{n}=A^{-1}$.
Hint: Use the relation $\mathbf{H}_{k} \boldsymbol{\gamma}_{j}=\boldsymbol{\delta}_{j}, 0 \leq j \leq k-1$ where $\boldsymbol{\gamma}_{j}=\mathbf{g}_{j+1}-\mathbf{g}_{j}, \boldsymbol{\delta}_{j}=$ $\mathbf{x}_{j+1}-\mathbf{x}_{j}$.

Normering:

1	a	$:$	5	2	a	$:$	4	3	a	$:$	5	4	a	$:$	7	5	a	$:$	4	6	a	$:$	3
				b	$:$	2										b	$:$	2		b	$:$	4	

Points: $\mathbf{3 6 + 4}=\mathbf{4 0}$

The scipt 'Mathematical Programming I'

 may be used during the examination. Good luck!