Exam: Mathematical Optimisation

08:45 - 11:45, Tuesday 17^{th} April 2018

Hints at the end of the paper. Workings must be shown. Good Luck!

1. Let $A \in \mathcal{S}^n$ be positive semidefinite. For $\mathbf{x} \in \mathbb{R}^n$ show that the following implication holds:

[3 points]

$$\mathbf{x}^\mathsf{T} \mathsf{A} \mathbf{x} = 0 \quad \Leftrightarrow \quad \mathsf{A} \mathbf{x} = \mathbf{0}.$$

Hint: Use Corollary 2.7 from the slides.

2. For the following system of inequalities, either find a feasible solution or show that a feasible solution does not exist.

[3 points]

$$-5x_1 + x_2 \le 3, (A)$$

$$-5x_1 - 2x_2 - 3x_3 \le -2, (B)$$

$$5x_1 + x_3 \le -2 \tag{C}$$

3. Consider the pair of primal-dual linear programs:

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\mathsf{T} \mathbf{x} \quad \text{s. t.} \quad \mathsf{A} \mathbf{x} \le \mathbf{b}, \tag{D}$$

$$\min_{\mathbf{y} \in \mathbb{R}^m} \quad \mathbf{b}^\mathsf{T} \mathbf{y} \quad \text{s. t.} \quad \mathsf{A}^\mathsf{T} \mathbf{y} = \mathbf{c}, \ \mathbf{y} \ge 0. \tag{E}$$

(a) Show that weak duality holds for these problems, i.e. for any pair \mathbf{x} , \mathbf{y} with \mathbf{x} feasible for (D) and \mathbf{y} feasible for (E), it holds that

[2 points]

$$\mathbf{c}^\mathsf{T} \mathbf{x} \le \mathbf{b}^\mathsf{T} \mathbf{y}$$
.

From now on in this question let (E) have a feasible point, and let ν be the minimal value of problem (E).

value of problem (E).

(b) Using part (a) of this question, show that if $\nu = -\infty$ then problem (D) does not have a feasible point.

[1 point]

(c) Using Farkas' lemma (Theorem 2.12 from the slides, Theorem 2.6 from the reader), show that if problem (D) does not have a feasible point then $\nu = -\infty$.

[3 points]

- 4. For a finite set \mathcal{J} , let $f_i \in C^1(\mathbb{R}^n, \mathbb{R})$ be a convex function for all $i \in \mathcal{J}$, and define the function $f(\mathbf{x}) := \max\{f_i(\mathbf{x}) : i \in \mathcal{J}\}.$
 - (a) Show that the function f is convex on \mathbb{R}^n .

[3 points]

(b) For $\overline{\mathbf{x}} \in \mathbb{R}^n$, define the set $\mathcal{J}(\overline{\mathbf{x}}) = \{j \in \mathcal{J} : f(\overline{\mathbf{x}}) = f_j(\overline{\mathbf{x}})\}$. Show that for all $\overline{\mathbf{x}} \in \mathbb{R}^n$ we have

[3 points]

$$\operatorname{conv}\{\nabla f_i(\overline{\mathbf{x}}): i \in \mathcal{J}(\overline{\mathbf{x}})\} \subseteq \partial f(\overline{\mathbf{x}}).$$

(c) Show that the point $\overline{\mathbf{x}} = (0, 1)^{\mathsf{T}}$ is a global minimiser of $f(\mathbf{x})$ over \mathbb{R}^n , where

[3 points]

$$f(\mathbf{x}) = \max\{\exp(x_1) + x_2^2, 6 - 2x_1 - 4x_2, \exp(-x_1) - 2x_2\}.$$

5. (a) Show that $f(x) = -\ln(x)$ is a convex function on $(0, \infty)$.

1 point

(b) Show that for any set of values $p_1, \ldots, p_n > 0$ with $\sum_{i=1}^n p_i = 1$ we have

3 points

$$-\sum_{i=1}^{n} p_i \ln(p_i) \le \ln(n)$$

- 6. Consider $f \in C^1(\mathbb{R}^n, \mathbb{R})$, $H \in \mathcal{S}^n$, $\mathbf{x}_k \in \mathbb{R}^n$, $\mathbf{g}_k = \nabla f(\mathbf{x}_k) \neq \mathbf{0}$ and $\mathbf{d}_k = -H\mathbf{g}_k$.
 - (a) Show that if H is positive definite then \mathbf{d}_k is a descent direction for f from \mathbf{x}_k .

1 point

(b) Assuming that H is indeed positive definite, let $t_k = \arg\min_{t\geq 0} f(\mathbf{x}_k + t\mathbf{d}_k)$, let $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k$ and let $\mathbf{g}_{k+1} = \nabla f(\mathbf{x}_{k+1})$. Show that $\mathbf{g}_k^\mathsf{T} \mathsf{H} \mathbf{g}_{k+1} = 0$.

2 points

7. Consider the problem of minimising $f: \mathbb{R}^n \to \mathbb{R}$ over \mathbb{R}^n for

$$f(\mathbf{x}) = 3x_1^4 - 4x_1^3 + 4x_1^2 + 2x_2^2 - 4x_1^2x_2.$$

(a) What is the gradient vector, $\nabla f(\mathbf{x})$, and the Hessian matrix, $\nabla^2 f(\mathbf{x})$, for this function?

(b) Determine the critical points and local minimiser(s) of f.

[2 points]

From now on in this question, for $\mathbf{x}_k, \mathbf{d}_k \in \mathbb{R}^n$, we let $t_k = \arg\min_t \{ f(\mathbf{x}_k + t\mathbf{d}_k) \}$ and $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k$.

Consider $\mathbf{x}_4 = \begin{pmatrix} 1, & 0 \end{pmatrix}^\mathsf{T}$ and $\mathbf{g}_3 = \begin{pmatrix} 0, & -4 \end{pmatrix}^\mathsf{T}$ and $\mathbf{d}_3 = \begin{pmatrix} 1, & 2 \end{pmatrix}^\mathsf{T}$. We will compute the following directions at \mathbf{x}_4 , which should not be normalised:

(c) Determine the direction of steepest descent of f at \mathbf{x}_4 .

1 point

(d) Using the Polak-Ribiere formula for α_4 , determine the conjugate gradient direction at x_4

2 points

(e) Determine the Newton direction of f at \mathbf{x}_4 .

2 points

8. (Automatic additional points)

[4 points]

Question:	1	2	3	4	5	6	7	8	Total
Points:	3	3	6	9	4	3	8	4	40

A copy of the lecture-sheets may be used during the examination.

Hints: 1. $\begin{pmatrix} a & b \\ b & c \end{pmatrix}^{-1} = \frac{1}{ac - b^2} \begin{pmatrix} c & -b \\ -b & a \end{pmatrix};$

- 2. $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is positive semidefinite if and only if $a + c \ge 0$ and $ac \ge b^2$. 3. $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is positive definite if and only if a + c > 0 and $ac > b^2$.
- 4. $-\ln(p_i) = \ln(1/p_i)$