Exam Mathematical Optimisation (201500379) Tuesday 16th April, 8.45 – 11.45

Motivate all your answers!

A copy of the lecture-sheets may be used during the exam. Good Luck!

- 1. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Show that
 - (a) $\min\{x^T A x \mid x^T x = 1\} = \max\{\lambda \mid A \lambda I \succeq 0\},\$

[4 points]

(b) the use of "min" and "max" in (a) is justified,

[2 points]

(c) the optimal value in (a) is the smallest eigenvalue of A.

(Hint: You may use any result (Theorem, Lemma) from the significant of the signific

[2 points]

- (Hint: You may use any result (Theorem, Lemma) from the sheets.)
- 2. Compute a lattice basis (for the colomns) of $A = \begin{bmatrix} 2 & 1 & 5 \\ 0 & 1 & 2 \end{bmatrix}$.

[4 points]

3. (a) Prove from scratch (i.e., without referring to any results from the sheets) that weak duality holds in Linear Programming.

[3 points]

(b) Interpret the following "Theorem of the Alternative" geometrically: Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following is true:

[2 points]

- $\exists x \in \mathbb{R}^n : Ax = b, x \ge 0$
- $\exists y \in \mathbb{R}^m : y^T A \ge 0, y^T b < 0.$
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 -function.
 - (a) Show that f is convex if and only if for all $x \in \mathbb{R}^n$ and all $h \in \mathbb{R}^n$ the corresponding C^1 -function $p(\lambda) := f(x + \lambda h)$ is a convex function on [0, 1].

[2 points]

(b) Show that f is convex if and only if for all $x \in \mathbb{R}^n$ and all $h \in \mathbb{R}^n$

[5 points]

$$[\nabla f(x+h) - \nabla f(x)]^T h \ge 0.$$

(Hint: One may use Theorem 4.8 from the sheets for " \Rightarrow " and apply Theorem 4.7 to the one variable functions $p(\lambda)$ to prove " \Leftarrow ".)

- 5. Consider $f(x_1, x_2) = x_1^4 + 2x_1x_2 + 2(x_1 + x_2) + x_2^2$.
 - (a) Determine the critical points and local minimizers of f.

[4 points]

(b) Does f have global minima?

[2 points]

- 6. For the Quasi-Newton Method, show that
 - (a) $d_k = -H_k g_k$ is a descent direction, provided $H_k \succ 0$.

[3 points]

(b) Explain why at the next iteration point x_{k+1} we have $g_{k+1}^T d_k = 0$.

[3 points]