Mathematical Optimization

Exam April 18, 2023, 8:45 - 11:45

No additional materials may be used during this exam (no notes, calculators, etc.). With this exam a list of theorems and lemmata is provided. In your proofs, you may use definitions from the lecture notes and the theorems and lemmata from the list without providing a proof (reference the theorem/lemma that you use). In addition, you may use all results from Appendix A and all theorems, lemmata, corollaries and propositions from Chapters 6 (Convex Sets), 7 (Convex Functions) and 9 (Iterative Optimization Methods) in the Lecture Notes (v. January 24, 2023) with a reference like "We know that...".

This exam has 8 exercises.

1. Given

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 7 & 1 & 0 \\ -3 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -14 & 8 & 12 \\ 0 & 32 & 49 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix},$$

either give a solution to Ax = b or use Corollary 3 to prove that no such solution exists.

- 2. Recall that $L(\mathbf{v}_1, \dots, \mathbf{v}_n) = \{\sum_{j=1}^n \mathbf{v}_j \lambda_j \mid \lambda_j \in \mathbb{Z}\}$ denotes the lattice generated by the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$.
 - (a) Compute linearly independent vectors \mathbf{c}_1 and \mathbf{c}_2 , such that

$$L(\mathbf{c}_1, \mathbf{c}_2) = L(\begin{pmatrix} 2 \\ 6 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 12 \\ 12 \end{pmatrix}).$$

(b) Decide if there is an integer solution \mathbf{x} to the system

$$\begin{pmatrix} 2 & 3 & 12 \\ 6 & 1 & 12 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 \\ -10 \end{pmatrix} .$$

If such \mathbf{x} exists, provide one. If no such \mathbf{x} exists, provide a vector \mathbf{y} that proofs it.

3. Use the Fourier-Motzkin procedure to show that all solutions to the system:

satisfy $0 \le y \le 8$.

^{© 2023:} Do not redistribute without explicit permission.

4. Let W be a linear subspace of \mathbb{R}^n . Consider the problem of finding a best approximation $\hat{\mathbf{x}} \in W$ of $\mathbf{x} \in \mathbb{R}^n$. That is, finding $\hat{\mathbf{x}} \in W$ such that

$$\|\mathbf{x} - \hat{\mathbf{x}}\|_2 = \min_{\mathbf{y} \in W} \|\mathbf{x} - \mathbf{y}\|_2.$$

Suppose we found $\mathbf{y} \in W$ such that $\mathbf{x} - \mathbf{y}$ is orthogonal to every $\mathbf{w} \in W$. Prove that \mathbf{y} is the unique best approximation of \mathbf{x} in \mathbb{R}^n .

- 5. Prove that a solution to $\mathbf{A}^T \mathbf{y} = \mathbf{c}$, $\mathbf{y} \geq \mathbf{0}$ exists if and only if $\mathbf{A} \mathbf{x} \leq \mathbf{0}$ implies $\mathbf{c}^T \mathbf{x} \leq \mathbf{0}$.
- 6. (a) Show that $f(\mathbf{x}) = ||x||$ defines a convex function $f : \mathbb{R}^n \to \mathbb{R}$. Here, ||x|| denotes any norm on \mathbb{R}^n .
 - (b) Let $g: \mathbb{R}^n \to I, I \subseteq \mathbb{R}$ be convex and $f: I \to \mathbb{R}$ be convex and non-decreasing. Show that the composition $f \circ g(\mathbf{x}) = f(g(\mathbf{x}))$ of f and g is convex.
 - (c) Consider the function $f(x,y) = e^{x-y}$. Prove that

$$f(x,y) \ge 1 + x - y$$
 for all $(x,y) \in \mathbb{R}^2$.

- 7. Let $f(\mathbf{x}) = \frac{1}{2}x_1^4 + 2x_1x_2 + 2x_1 + (1+x_2)^2$.
 - (a) Determine the critical points and the local minimizer(s) of f.
 - (b) Does f have (a) global minimizer(s)? Motivate!
- 8. (a) Pick a suitable series of step sizes t_k (argue why your pick is suitable) and apply two steps of the subgradient method to

$$f(\mathbf{x}) = \max\{x_1 + x_2, -x_1 + x_2, x_1 - x_2, -x_1 - x_2\}$$

starting at $\mathbf{x}_0 = (0, \frac{1}{\sqrt{2}})^T$.

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \frac{1}{3}x^3 + 2xy + x + y^2$. Apply one step of Newton's method to f, starting from $(x_0, y_0) = (2, 0)$. Is the direction a descent direction?

Points: 90 + 10 = 100

- 1. : 8 pt.
- 6. (a) : 6 pt.

2. (a) : 8 pt.

(b) : 6 pt.

(b) : 5 pt.

(c) : 6 pt.

3. : 6 pt.

7. (a) : 8 pt.

4. : 8 pt.

(b) : 5 pt.

5. : 8 pt.

- 8. (a) : 8 pt.
 - (b) : 8 pt.

Script Mathematical Optimization (2022/2023)

The following results will be provided during the examinations of Mathematical Optimization, and can be used without proof, referring to the name.

Lemma 1 (Taylor's formula). For a C^2 -function $f: U \to \mathbb{R}$, with $U \subseteq \mathbb{R}^n$, and $\|\mathbf{d}\|$ small enough:

$$f(\mathbf{x}_0 + \mathbf{d}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \mathbf{d} + \frac{1}{2} \mathbf{d}^T \nabla^2 f(\mathbf{x}_0) \mathbf{d} + o(\|\mathbf{d}\|^2)$$

or for, additionally, some $\tau \in (0, 1)$:

$$f(\mathbf{x}_0 + \mathbf{d}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \mathbf{d} + \frac{1}{2} \mathbf{d}^T \nabla^2 f(\mathbf{x}_0 + \tau \mathbf{d}) \mathbf{d}$$
.

Corollary 2 (LU-factorization). For every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, there exists an $(m \times m)$ -permutation matrix \mathbf{P} and an invertible lower triangular matrix $\mathbf{M} \in \mathbb{R}^{m \times m}$ such that $\mathbf{U} = \mathbf{MPA}$ is upper triangular.

Corollary 3 (Gale's Theorem). Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ be given. Then exactly one of the following alternatives is true:

- (I) There exists some $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- (II) There exists a vector $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T \mathbf{A} = \mathbf{0}^T$ and $\mathbf{y}^T \mathbf{b} \neq 0$.

Theorem 4 (Integer solutions to linear system of equations). Let $\mathbf{A} \in \mathbb{Z}^{m \times n}$ and $\mathbf{b} \in \mathbb{Z}^m$ be given. Then exactly one of the following statements is true:

- (I) There exists some $\mathbf{x} \in \mathbb{Z}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- (II) There exists some $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T \mathbf{A} \in \mathbb{Z}^n$ and $\mathbf{y}^T \mathbf{b} \notin \mathbb{Z}$.

Corollary 5 (Identification of positive (semi-)definite matrices). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $\mathbf{Q} \in \mathbb{R}^{n \times n}$ an invertible matrix such that $\mathbf{D} = \mathbf{Q} \mathbf{A} \mathbf{Q}^T$ is diagonal. Then

- (a) A is positive semidefinite if and only if all diagonal elements of D are non-negative.
- (b) A is positive definite if and only if all diagonal elements of D are strictly positive.

Corollary 6 (Identification of 2×2 positive (semi-)definite matrices). Let $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ be a symmetric matrix. Then

- (a) A is positive semidefinite if and only if all diagonal elements and the determinant of A are non-negative.
- (b) A is positive definite if and only if all diagonal elements and the determinant of A are strictly positive.

Theorem 7 (Spectral Theorem for Symmetric Matrices). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exists a matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ and eigenvalues $\lambda_1, \dots, \lambda_n$ of **A** such that

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$$
 and $\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \text{diag } (\lambda_1, \dots, \lambda_n)$.

Note: the columns of **Q** form an orthonormal basis of \mathbb{R}^n , consisting of eigenvectors of **A**.

Theorem 8 (Farkas Lemma). Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ be given.

Then exactly one of the following alternatives is true:

- (I) $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ is feasible.
- (II) There exists a vector $\mathbf{y} \geq \mathbf{0}$ such that $\mathbf{y}^T \mathbf{A} = \mathbf{0}^T$ and $\mathbf{y}^T \mathbf{b} < 0$.

Theorem 9 (Strong Duality). Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$ and be given, and suppose that either:

- (I) there exists some $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ or
 - (II) there exists some $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{A}^T \mathbf{y} = \mathbf{c}$ and $\mathbf{y} \geq \mathbf{0}$.

Then

$$\max\{\mathbf{c}^T\mathbf{x}\,|\,\mathbf{A}\mathbf{x}\leq\mathbf{b}\}\ =\ \min\{\mathbf{b}^T\mathbf{y}\,|\,\mathbf{A}^T\mathbf{y}=\mathbf{c},\mathbf{y}\geq\mathbf{0}\}\;.$$

If both (I) and (II) are feasible, then optimal solutions \mathbf{x} of (I) and \mathbf{y} of (II) exist and satisfy $\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$.

Lemma 10 (Necessary optimality conditions). Let f be a \mathbb{C}^2 -function on \mathbb{R}^n . Then each local minimizer $\overline{x} \in \mathbb{R}^n$ of f satisfies:

- (a) (First order condition) $\nabla f(\overline{x}) = \mathbf{0}^T$ (b) (Second order condition) $\mathbf{d}^T \nabla^2 f(\overline{x}) \mathbf{d} \geq \mathbf{0}$ for all $\mathbf{d} \in \mathbb{R}^n$.

Lemma 11 (Sufficient optimality condition). Let f be a C^2 -function on \mathbb{R}^n and $\overline{x} \in \mathbb{R}^n$ such that $\nabla f(\overline{x}) = \mathbf{0}^T$ holds. Then \overline{x} is a strict local minimizer of f, provided \overline{x} satisfies

$$\mathbf{d}^T \nabla^2 f(\overline{x}) \mathbf{d} > 0$$
 for all $\mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$