Examination: Mathematical Programming I (158025)

$$
\text { July 1, 2002, } \quad 13.30-16.30
$$

Ex. 1 Consider the primal-dual pair of linear problems:

$$
\begin{array}{llll}
(P) & \max _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{c}^{T} \mathbf{x} & \text { s.t. } & \mathbf{A x} \leq \mathbf{b} \\
\text { (D) } & \min _{\mathbf{y} \in \mathbb{R}^{m}} \mathbf{b}^{T} \mathbf{y} & \text { s.t. } & \mathbf{A}^{T} \mathbf{y}=\mathbf{c}, \quad \mathbf{y} \geq \mathbf{0}
\end{array}
$$

Assume (P) and (D) are both feasible.
(a) Let \mathbf{x} be a (fixed) vector, feasible for (P). Show that there exists a constant $\kappa \geq 0$ such that for any optimal solution \mathbf{y} of (D) we have:

$$
0 \leq \mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x}=\mathbf{y}^{T}(\mathbf{b}-\mathbf{A x})=\kappa .
$$

(b) Show that the set of optimal solutions of (D) is bounded if and only if (P) has a strictly feasible point \mathbf{x} (i.e., $\mathbf{A x}<\mathbf{b}$).
Hint: " \Leftarrow ": Use (a)

Ex. 2

(a) Show that $f(x)=-\ln x$ is a convex function on $(0, \infty)$.
(b) Use (a) to show (geometric and arithmetic mean):

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \quad \text { for all } a_{1}, \ldots, a_{n}>0
$$

Ex. 3 Let \mathbf{A} be a positive definite matrix and $\mathbf{b} \in \mathbb{R}^{n}$.
(a) Show that $\langle\mathbf{x} \mid \mathbf{y}\rangle_{A}:=\frac{1}{2} \mathbf{x}^{T} \mathbf{A y}$ defines an inner product on \mathbb{R}^{n}. So $\|\mathbf{x}\|_{A}:=\sqrt{\langle\mathbf{x} \mid \mathbf{x}\rangle_{A}}$ defines a norm on \mathbb{R}^{n}.
(b) Let $C \subseteq \mathbb{R}^{n}$ be a closed convex set. Consider the minimization problem.

$$
(P) \quad \min \left\{\left.\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x} \quad \right\rvert\, \quad \mathbf{x} \in C\right\}
$$

Show: A minimizer of (P) exists and is unique.

Ex. 4 Find the critical points (i.e. points satisfying $\left.\nabla f(\mathbf{x})=\mathbf{0}^{T}, \mathbf{x}=\left(x_{1}, x_{2}\right)\right)$ of the function

$$
f(\mathbf{x})=-\left(x_{1}-x_{2}\right)^{4}+x_{1}^{2}+x_{2}^{2}
$$

and determine the local minimizers.
Does there exist a global minimizer or a global maximizer of f on \mathbb{R}^{n} ?
Ex. 5 For the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(\mathbf{x})=\|\mathbf{x}\|$ (Euclidean norm) show:
(a) f is convex and continuous on \mathbb{R}^{n}.
(b) For any $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$

$$
\partial f(\overline{\boldsymbol{x}})= \begin{cases}\left\{\boldsymbol{\xi} \in \mathbb{R}^{n} \mid\|\boldsymbol{\xi}\| \leq 1\right\} & \text { if } \overline{\boldsymbol{x}}=\mathbf{0} \\ \{\overline{\boldsymbol{x}} /\|\overline{\boldsymbol{x}}\|\} & \text { if } \overline{\boldsymbol{x}} \neq \mathbf{0}\end{cases}
$$

Ex. 6 Let be given convex functions $f_{j} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right), j \in J$, with a finite index set J.
Define the function $f(\mathbf{x}):=\max \left\{f_{j}(\mathbf{x}) \mid j \in J\right\}, \mathbf{x} \in \mathbb{R}^{n}$ and for any $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$ the set $J(\overline{\boldsymbol{x}})=\left\{j \in J \mid f(\overline{\boldsymbol{x}})=f_{j}(\overline{\boldsymbol{x}})\right\}$.
(a) Show that the function f is convex on \mathbb{R}^{n}.
(b) Prove that for any $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$ we have :

$$
\operatorname{conv}\left\{\nabla f_{j}(\overline{\boldsymbol{x}}) \mid j \in J(\overline{\boldsymbol{x}})\right\} \quad \subset \quad \partial f(\overline{\boldsymbol{x}}) .
$$

Points: $\quad \mathbf{3 6}+\mathbf{4}=\mathbf{4 0}$

Ex. 1	a	$:$	2 pt.
	b	$:$	5 pt.

Ex. $2 \mathrm{a}: 2 \mathrm{pt}$.
b : 3 pt .
Ex. 3 a : 2 pt.
$\mathrm{b}: 4 \mathrm{pt}$.
Ex. 4 : 6 pt.
Ex. 5 a : 2 pt.
b : 4 pt .
Ex. 6 a : 3 pt.
b : 3 pt .
The scipt 'Mathematical Programming I' may be used during the examination. Good luck!

