Examination: Mathematical Programming I (158025)

$$
\text { June } 30,2003, \quad 13.30-16.30
$$

Ex. 1 Prove the following statements.
(a) Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ be a given matrix $(m \leq n)$. Then $\mathbf{A}^{T} \mathbf{A}$ is positive definite if and only if \mathbf{A} has full rank (m).
(b) For a symmetric ($n \times n$)-matrix \mathbf{A} the following holds: \mathbf{A} is positive semidefinite if and only if all eigenvalues λ_{j} of \mathbf{A} are non-negative $\left(\lambda_{j} \geq 0, j=\right.$ $1, \ldots, n)$.

Ex. 2 Consider the primal-dual pair of linear problems:

$$
\begin{array}{llll}
(P) & \max _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{c}^{T} \mathbf{x} & \text { s.t. } & \mathbf{A x} \leq \mathbf{b} \\
\text { (D) } & \min _{\mathbf{y} \in \mathbb{R}^{m}} \mathbf{b}^{T} \mathbf{y} & \text { s.t. } & \mathbf{A}^{T} \mathbf{y}=\mathbf{c}, \quad \mathbf{y} \geq \mathbf{0}
\end{array}
$$

Show the following:
(a) There exists a feasible point for D (i.e. a point satisfying $\mathbf{A}^{T} \mathbf{y}=\mathbf{c}, \mathbf{y} \geq \mathbf{0}$) if and only if $\mathbf{c}^{T} \mathbf{x} \leq 0$ is implied by $\mathbf{A x} \leq \mathbf{0}$.
(b) Let the feasible set $\mathcal{F}_{P}=\{\mathbf{x} \mid \mathbf{A x} \leq \mathbf{b}\}$ be non-empty. Show:

The value $f(\mathbf{x})=\mathbf{c}^{T} \mathbf{x}$ is bounded from above on \mathcal{F}_{P} if and only if $\mathbf{c}^{T} \mathbf{x} \leq 0$ is implied by $\mathbf{A x} \leq \mathbf{0}$.

Ex. 3

(a) Show that $f(\mathbf{x})=\|\mathbf{x}\|\left(\|\mathbf{x}\|\right.$ any norm on $\left.\mathbb{R}^{n}\right)$ defines a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
(b) Let $g: \mathbb{R}^{n} \rightarrow I, I \subset \mathbb{R}$ be convex and $f: I \rightarrow \mathbb{R}$ be convex and nondecreasing. Show that the composition $f \circ g(\mathbf{x})=f(g(\mathbf{x}))$ of the functions f and g is convex.
(c) Show: The function $f(x)=e^{\|\mathbf{x}\|}$ is convex on \mathbb{R}^{n} (for any norm $\|\mathbf{x}\|$ on \mathbb{R}^{n}).

Ex. 4

(a) Let $f:(a, b) \rightarrow \mathbb{R}$ be a convex function. Show for all $x \in(a, b)$:

$$
\partial f(x)=\left\{d \in \mathbb{R} \mid f_{-}^{\prime}(x) \leq d \leq f_{+}^{\prime}(x)\right\} .
$$

(b) Determine the subdifferentials for the function $f(x)=\left|x^{2}-1\right|$ at the points $x_{0}=0, x_{1}=1$, and $x_{2}=4$. (Is the function f convex?).

Ex. 5 Given the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(\mathbf{x})=x_{1}^{3}+e^{3 x_{2}}-3 x_{1} e^{x_{2}}
$$

(a) Find the critical points (i.e. points satisfying $\left.\nabla f(\mathbf{x})=\mathbf{0}^{T}, \mathbf{x}=\left(x_{1}, x_{2}\right)\right)$ of the function f and determine the local minimizers.
(b) Does there exist a global minimizer or a global maximizer of f on \mathbb{R}^{n} ?
(c) Suppose we apply the steepest descent method to f. What can you say about the (local) convergence properties. (Quadratic or linear convergent? Give an estimate for the convergence factor.)

Points: $\quad \mathbf{3 6 + 4}=\mathbf{4 0}$
Ex. 1 a : 3 pt .
b : 4 pt .
Ex. $2 \mathrm{a}: 3 \mathrm{pt}$.
b : 4 pt .
Ex. 3 a : 2 pt .
b : 4 pt .
c : 1 pt .
Ex. 4 a : 5 pt.
b : 2 pt .
Ex. 5 a : 4 pt.
b : 2 pt .
c : 2 pt .
The scipt 'Mathematical Programming I' may be used during the examination. Good luck!

