Examination: Mathematical Programming I (158025)

June 30, 2003, 13.30-16.30

Ex.1 Prove the following statements.

- (a) Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ be a given matrix $(m \le n)$. Then $\mathbf{A}^T \mathbf{A}$ is positive definite if and only if \mathbf{A} has full rank (m).
- (b) For a symmetric $(n \times n)$ -matrix **A** the following holds: **A** is positive semidefinite if and only if all eigenvalues λ_j of **A** are non-negative $(\lambda_j \ge 0, j = 1, ..., n)$.
- **Ex.2** Consider the primal-dual pair of linear problems:

(P)
$$\max_{\mathbf{x}\in\mathbb{R}^n} \mathbf{c}^T \mathbf{x}$$
 s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
(D) $\min_{\mathbf{y}\in\mathbb{R}^m} \mathbf{b}^T \mathbf{y}$ s.t. $\mathbf{A}^T \mathbf{y} = \mathbf{c}$, $\mathbf{y} \geq \mathbf{0}$

Show the following:

- (a) There exists a feasible point for *D* (i.e. a point satisfying $\mathbf{A}^T \mathbf{y} = \mathbf{c}$, $\mathbf{y} \ge \mathbf{0}$) if and only if $\mathbf{c}^T \mathbf{x} \le 0$ is implied by $\mathbf{A}\mathbf{x} \le \mathbf{0}$.
- (b) Let the feasible set $\mathcal{F}_P = {\mathbf{x} | \mathbf{A}\mathbf{x} \leq \mathbf{b}}$ be non-empty. Show: The value $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$ is bounded from above on \mathcal{F}_P if and only if $\mathbf{c}^T \mathbf{x} \leq 0$ is implied by $\mathbf{A}\mathbf{x} \leq \mathbf{0}$.

Ex. 3

- (a) Show that $f(\mathbf{x}) = \|\mathbf{x}\|$ ($\|\mathbf{x}\|$ any norm on \mathbb{R}^n) defines a convex function $f: \mathbb{R}^n \to \mathbb{R}$.
- (b) Let $g : \mathbb{R}^n \to I$, $I \subset \mathbb{R}$ be convex and $f : I \to \mathbb{R}$ be convex and nondecreasing. Show that the composition $f \circ g(\mathbf{x}) = f(g(\mathbf{x}))$ of the functions f and g is convex.
- (c) Show : The function $f(x) = e^{\|\mathbf{x}\|}$ is convex on \mathbb{R}^n (for any norm $\|\mathbf{x}\|$ on \mathbb{R}^n).

Ex. 4

(a) Let $f: (a, b) \to \mathbb{R}$ be a convex function. Show for all $x \in (a, b)$:

$$\partial f(x) = \{ d \in \mathbb{R} \mid f'_{-}(x) \le d \le f'_{+}(x) \}.$$

- (b) Determine the subdifferentials for the function $f(x) = |x^2 1|$ at the points $x_0 = 0, x_1 = 1$, and $x_2 = 4$. (Is the function *f* convex?).
- **Ex. 5** Given the function $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(\mathbf{x}) = x_1^3 + e^{3x_2} - 3x_1e^{x_2} \,.$$

- (a) Find the critical points (i.e. points satisfying $\nabla f(\mathbf{x}) = \mathbf{0}^T$, $\mathbf{x} = (x_1, x_2)$) of the function f and determine the local minimizers.
- (b) Does there exist a global minimizer or a global maximizer of f on \mathbb{R}^n ?
- (c) Suppose we apply the steepest descent method to f. What can you say about the (local) convergence properties. (Quadratic or linear convergent? Give an estimate for the convergence factor.)

Points: 36+4 =40

The scipt 'Mathematical Programming I' may be used during the examination. Good luck!