Examination: Mathematical Programming I (158025)

June 28, 2004, 13.30-16.30

Ex.1 Prove the following statements.

- (a) Let $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$ be a positive definite matrix. Then \mathbf{A} is regular and also the inverse \mathbf{A}^{-1} is positive definite.
- (b) Suppose $\mathbf{A} \ge 0$ and $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$. Then $\mathbf{A} \mathbf{x} = \mathbf{0}$.

Ex.2

(a) Show that the following system does <u>not</u> have any feasible solution.

x_1	+	$2x_2$	+	$3x_3$	\leq	-1
$-2x_1$	+	x_2			\leq	2
		$-5x_{2}$	_	$6x_3$	\leq	-1

(b) Consider the pair of primal and dual linear programs,

$$\begin{aligned} & \mathbf{P} : \quad \max_{\mathbf{x} \in \mathbb{R}^n} \ \mathbf{c}^T \mathbf{x} \quad \text{s.t.} \quad \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ & \mathbf{D} : \quad \min_{\mathbf{y} \in \mathbb{R}^m} \ \mathbf{b}^T \mathbf{y} \quad \text{s.t.} \quad \mathbf{A}^T \mathbf{y} = \mathbf{c} \ , \quad \mathbf{y} \geq \mathbf{0} \ , \end{aligned}$$

where **A** is an $(m \times n)$ -matrix $(m \ge n)$ and $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$. Let v_P denote the maximum value of the primal program P and v_D the minimum value of the dual problem D. The feasible sets of P and D are abbreviated by F_P and F_D . Suppose the feasible set F_P is not empty $(F_P \neq \emptyset)$. Show that then we have

$$F_D = \emptyset$$
 if and only if $v_P = \infty$.

Ex.3

- (a) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function and consider the affine transformation $\mathbf{x} = \mathbf{A}\mathbf{y} + \mathbf{b}$ with \mathbf{A} a $(n \times m)$ -matrix and $\mathbf{b} \in \mathbb{R}^n$. Show that the composition $g : \mathbb{R}^m \to \mathbb{R}, g(\mathbf{y}) := f(\mathbf{A}\mathbf{y} + \mathbf{b})$ is convex on \mathbb{R}^m .
- (b) Let be given convex functions $f_j : \mathbb{R}^n \to \mathbb{R}, \quad j \in J$, with a finite index set J. Define the function $f(\mathbf{x}) := \max\{f_j(\mathbf{x}) \mid j \in J\}, \ \mathbf{x} \in \mathbb{R}^n$. Show that the function f is convex on \mathbb{R}^n .

Ex.4 Given the function $f(\mathbf{x}) = x_1^4 + x_2^4 - 4x_1x_2 + 2$.

- (a) Determine the critical points and the local minimizer(s) of f.
- (b) Does there exist a global minimizer (on \mathbb{R}^n).

Ex.5 Consider the quadratic function $q : \mathbb{R}^n \to \mathbb{R}$,

$$q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{C} \mathbf{x} + \mathbf{b}^T \mathbf{x} ,$$

with a symmetric matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$. Suppose the function q is bounded from below, *i.e.*, there exists a constant $K \in \mathbb{R}$ such that

$$q(\mathbf{x}) \ge K$$
 for all $\mathbf{x} \in \mathbb{R}^n$.

Under these assumptions:

- (a) Show that C must be positive semidefinite.
- (b) For any **x** satisfying $\mathbf{C}\mathbf{x} = \mathbf{0}$ it follows $\mathbf{b}^T\mathbf{x} = 0$.
- (c) Show: There exists a solution of $\mathbf{Cx} = -\mathbf{b}$. Furthermore, the quadratic function q has a global minimizer on \mathbb{R}^n .

Points: 36+4 = 40

The scipt 'Mathematical Programming I' may be used during the examination. Good luck!