Examination: Mathematical Programming I

June 28, 2004, 13.30-16.30

Ex. 1 Prove the following statements.
(a) Let $\mathbf{A}=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a positive definite matrix. Then \mathbf{A} is regular and also the inverse \mathbf{A}^{-1} is positive definite.
(b) Suppose $\mathbf{A} \geq 0$ and $\mathbf{x}^{T} \mathbf{A x}=0$. Then $\mathbf{A x}=\mathbf{0}$.

Ex. 2

(a) Show that the following system does not have any feasible solution.

$$
\begin{array}{rrr}
x_{1}+2 x_{2}+3 x_{3} & \leq-1 \\
-2 x_{1}+x_{2} & \leq 2 \\
-5 x_{2}-6 x_{3} & \leq-1 .
\end{array}
$$

(b) Consider the pair of primal and dual linear programs,

$$
\begin{array}{llll}
\text { P: } & \max _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{c}^{T} \mathbf{x} & \text { s.t. } & \mathbf{A x} \leq \mathbf{b} \\
\text { D : } & \min _{\mathbf{y} \in \mathbb{R}^{m}} \mathbf{b}^{T} \mathbf{y} & \text { s.t. } & \mathbf{A}^{T} \mathbf{y}=\mathbf{c}, \quad \mathbf{y} \geq \mathbf{0},
\end{array}
$$

where \mathbf{A} is an $(m \times n)$-matrix $(m \geq n)$ and $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$. Let v_{P} denote the maximum value of the primal program P and v_{D} the minimum value of the dual problem D . The feasible sets of P and D are abbreviated by F_{P} and F_{D}. Suppose the feasible set F_{P} is not empty $\left(F_{P} \neq \emptyset\right)$. Show that then we have

$$
F_{D}=\emptyset \text { if and only if } \quad v_{P}=\infty .
$$

Ex. 3

(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function and consider the affine transformation $\mathbf{x}=\mathbf{A y}+\mathbf{b}$ with \mathbf{A} a $(n \times m)$-matrix and $\mathbf{b} \in \mathbb{R}^{n}$. Show that the composition $g: \mathbb{R}^{m} \rightarrow \mathbb{R}, g(\mathbf{y}):=f(\mathbf{A y}+\mathbf{b})$ is convex on \mathbb{R}^{m}.
(b) Let be given convex functions $f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, j \in J$, with a finite index set J. Define the function $f(\mathbf{x}):=\max \left\{f_{j}(\mathbf{x}) \mid j \in J\right\}, \mathbf{x} \in \mathbb{R}^{n}$. Show that the function f is convex on \mathbb{R}^{n}.

Ex. 4 Given the function $f(\mathbf{x})=x_{1}^{4}+x_{2}^{4}-4 x_{1} x_{2}+2$.
(a) Determine the critical points and the local minimizer(s) of f.
(b) Does there exist a global minimizer (on \mathbb{R}^{n}).

Ex. 5 Consider the quadratic function $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{C} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}
$$

with a symmetric matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$. Suppose the function q is bounded from below, i.e., there exists a constant $K \in \mathbb{R}$ such that

$$
q(\mathbf{x}) \geq K \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n}
$$

Under these assumptions:
(a) Show that \mathbf{C} must be positive semidefinite.
(b) For any \mathbf{x} satisfying $\mathbf{C x}=\mathbf{0}$ it follows $\mathbf{b}^{T} \mathbf{x}=0$.
(c) Show: There exists a solution of $\mathbf{C x}=-\mathbf{b}$. Furthermore, the quadratic function q has a global minimizer on \mathbb{R}^{n}.

Points: $\quad 36+4=40$
Ex. 1 a : 3 pt .
$\mathrm{b}: 3 \mathrm{pt}$.
Ex. $2 \mathrm{a}: 3 \mathrm{pt}$.
$\mathrm{b}: 4 \mathrm{pt}$.
Ex. 3 a : 3 pt.
b : 3 pt .
Ex. $4 \mathrm{a}: 4 \mathrm{pt}$.
b : 3 pt .
Ex. 5 a : 3 pt .
b : 2 pt .
c : 5 pt .

The scipt 'Mathematical Programming I' may be used during the examination. Good luck!

