Examination: Mathematical Programming I (191580250)

July 6, 2012, 8.45 - 11.45

Ex.1 Prove the following statements.

- Let $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$ be a positive definite matrix. Show that the matrix \mathbf{A} is nonsingular.
- (b) Consider a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ of the form $\mathbf{A} = \sum_{i=1}^{k} \mathbf{b}_{i} \mathbf{b}_{i}^{T}$ with vectors $\mathbf{b}_{i} \in \mathbb{R}^{n}, i = 1, \ldots, k$. Show that \mathbf{A} is positive semidefinite.

Under the additional assumption that the vectors \mathbf{b}_i are linearly independent, prove that the rank of \mathbf{A} is k (i.e., ker $\mathbf{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0}\}$ has dimension n - k.)

Ex.2 Let be given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Show that precisely one of the following alternatives 1 or II is true:

(I) $\mathbf{A}\mathbf{x} < \mathbf{b}$ has a solution \mathbf{x}

(II)
$$\mathbf{A}^T \mathbf{y} = \mathbf{0}, \ \mathbf{b}^T \mathbf{y} \le 0, \mathbf{y} \ge \mathbf{0}, \mathbf{y} \ne \mathbf{0}$$
 has a solution \mathbf{y}

Hint: You may first prove that (I) and (II) cannot hold simultaneously. To finish the proof, use a trick as in the proof of Gordan's corollary

Ex. 3 Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function on \mathbb{R} . Suppose there are points $x_1 < x_2 < x_3$ and $a, b \in \mathbb{R}$ such that $f(x_i) = ax_i + b, i = 1, 2, 3, i.e.$, the points $(x_i, f(x_i))$ are on a line. Prove that then we must have: f(x) = ax + b for all $x \in [x_1, x_3]$.

Ex. 4

- (a) Let $C_i \subset \mathbb{R}^n$, $i \in I$, be convex sets, where I is some (possibly infinite) index set. Show that the set $C := \bigcap_{i \in I} C_i$ is also convex.
- Let $f_i : \mathbb{R}^n \to \mathbb{R}, i \in I$, be convex functions on \mathbb{R}^n , where I is some index set. Show that the function $f(x) := \max \{f_i(x)\}$ is also convex.

Is there a relation between the result in (a) and (b)?

Ex. 5 We wish to compute the minimizer $\overline{\mathbf{x}}$ of the quadratic function $q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x}$ with positive definite matrix \mathbf{A} .

- Determine the minimizer $\overline{\mathbf{x}}$ of q and show that for any starting point \mathbf{x}_0 the Newton method finds this minimizer of q in one step.
- (b) Let us apply the Quasi-Newton method. Suppose that this method produces the iterates x_k , the search directions \mathbf{d}_k and the matrices \mathbf{H}_k , $k = 0, 1, \dots$. Show that the relation holds:

$$\mathbf{H}_{k}^{-1}d_{j} = \mathbf{A}d_{j}$$
, for all $j = 0, ..., k - 1$,

and after *n* steps we have $\mathbf{H}_n = A^{-1}$. *Hint.* Use the relation (from the proof of Lemma 5.6): $\mathbf{H}_k \boldsymbol{\gamma}_j = \boldsymbol{\delta}_j, \ 0 \le j \le k-1$, where $\boldsymbol{\gamma}_j \doteq \mathbf{g}_{j+1} - \mathbf{g}_j, \ \boldsymbol{\delta}_j = \mathbf{x}_{j+1} - \mathbf{x}_j$. **Ex. 6** Show: Given $\mu > 0$ and $\mathbf{p} = (p_1, \dots, p_n)^T \in \mathbb{R}^n$ with $\mathbf{p} > \mathbf{0}$, the function

$$f(\mathbf{x}) := \mathbf{p}^T \mathbf{x} - \mu \sum_{i=1}^n \ln(x_i)$$

is convex on $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} > \mathbf{0}\}$ and the point $\overline{\mathbf{x}} = (\mu/p_1, \dots, \mu/p_n)^T$ is the unique minimizer of f.

Points: 36+	4 =40		~			
E×1	g .	2 pt	EX 4	A	:	<u>2 pt.</u>
2).	R :	<u>4 pt.</u>		Þ	i	<u>4 pt.</u>
Ex2	:	6 pt.	Ex. 5	à	•	<u>3 pt.</u>
ER 3		5 nt	0	b	:	4 pt.
July 5	•	5 pt.	Ex. 6		:	<u>6 pt.</u>

A copy of the lecture-sheets may be used during the examination. (The copies may not contain worked out exercises.) Good luck!