Examination: Mathematical Programming I (191580250)

$$
\text { July } 6,2012, \quad 8.45-11.45
$$

Ey. 1 Prove the following statements.
Let $\mathbf{A}=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a positive definite matrix. Show that the matrix \mathbf{A} is nonsingular.
(B) Consider a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ of the form $\mathbf{A}=\sum_{i=1}^{k} \mathbf{b}_{i} \mathbf{b}_{i}^{T}$ with vectors $\mathbf{b}_{i} \in \mathbb{R}^{n}, i=$ $1, \ldots, k$. Show that \mathbf{A} is positive semidefinite.
Under the additional assumption that the vectors \mathbf{b}_{i} are linearly independent, prove that the rank of \mathbf{A} is k (i.e., $\operatorname{ker} \mathbf{A}=\{\mathbf{x} \mid \mathbf{A} \mathbf{x}=0\}$ has dimension $n-k$.)
E. 2 Let be given $\mathrm{A} \in \mathbb{R}^{m \times n}$ and $\mathrm{b} \in \mathbb{R}^{m}$. Show that precisely one of the following alternatives 1 or $I I$ is true:
(I) $\quad \mathrm{Ax}<\mathrm{b}$ has a solution x
(II) $\quad \mathbf{A}^{T} \mathbf{y}=0, \mathbf{b}^{T} \mathrm{y} \leq 0, \mathrm{y} \geq 0, \mathrm{y} \neq 0 \quad$ has a solution y

Hint: You may first prove that (I) and (II) cannot hold simultaneously. To finish the proof, use a trick as in the proof of Gordan's corollary
E. 3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on \mathbb{R}. Suppose there are points $x_{1}<x_{2}<x_{3}$ and $a, b \in \mathbb{R}$ such that $f\left(x_{i}\right)=a x_{i}+b, i=1,2,3$, i.e., the points $\left(x_{i}, f\left(x_{i}\right)\right)$ are on a line. Prove that then we must have: $f(x)=a x+b$ for all $x \in\left[x_{1}, x_{3}\right]$.
E. 4
(a) Let $C_{i} \subset \mathbb{R}^{n}, i \in I$, be convex sets, where I is some (possibly infinite) index set. Show that the set $C:=\bigcap_{i \in I} C_{i}$ is also convex.
(6) Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i \in I$, be convex functions on \mathbb{R}^{n}, where I is some index set. Show that the function $f(x):=\max _{i \in I}\left\{f_{i}(x)\right\}$ is also convex.
Is there a relation between the result in (a) and (b)?
Ex. 5 We wish to compute the minimizer $\overline{\mathbf{x}}$ of the quadratic function $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \dot{\mathbf{x}}$ with positive definite matrix A.
(4.) Determine the minimizer $\overline{\mathrm{x}}$ of q and show that for any starting point x_{0} the Newton method finds this minimizer of q in one step.
(b) Let us apply the Quasi-Newton method. Suppose that this method produces the iterates x_{k}, the search directions d_{k} and the matrices $\mathbf{H}_{k}, k=0,1, \ldots$. Show that the relation holds:

$$
\mathbf{H}_{k}^{-1} d_{j}=\mathbf{A} d_{j}, \text { for all } j=0, \ldots, k-1,
$$

and after n steps we have $\mathrm{H}_{n}=A^{-1}$.
Hint. Use the relation (from the proof of Lemma 5.6): $\mathbf{H}_{k} \gamma_{j}=\delta_{j}, 0 \leq j \leq k-1$, where $\boldsymbol{\gamma}_{j}=\mathbf{g}_{j+1}-\mathrm{g}_{j}, \boldsymbol{\delta}_{j}=\mathrm{x}_{j+1}-\mathrm{x}_{j}$.

Ex. 6 Show: Given $\mu>0$ and $\mathrm{p}=\left(p_{1}, \ldots, p_{n}\right)^{T} \in \mathbb{R}^{n}$ with $\mathrm{p}>0$, the function

$$
f(\mathbf{x}):=\mathbf{p}^{T} \cdot \mathbf{x}-\mu \sum_{i=1}^{n} \ln \left(x_{i}\right)
$$

is convex on $\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x}>0\right\}$ and the point $\overline{\boldsymbol{x}}=\left(\mu / p_{1}, \ldots, \mu / p_{n}\right)^{T}$ is the unique minimizer of f.

Points: $\quad 36+4=\mathbf{4 0}$

A copy of the lecture-sheets may be used during the examination. (The copies may not contain worked out exercises.) Good luck!

