Examination: Mathematical Programming I (191580250)

July 2, 2013, 8.45-11.45

Ex. 1

(a) Show that $A \in \mathbb{R}^{n \times n}$ is positive definite if and only if A^{-1} is positive definite.
(b) Let $A \in \mathbb{R}^{n \times n}$ be positive semidefinite and assume that for $x \in \mathbb{R}^{n}$ the relation $x^{T} A x=0$ is satisfied. Show that then $A x=0$ holds.

Ex. 2 Consider the system of inequalities

$$
\begin{align*}
x_{1}+x_{2} & \leq 1 \\
x_{1}-x_{2} & \leq-2 \\
-x_{2} & \leq-4 \tag{*}\\
-x_{1}+x_{2} & \leq 5
\end{align*}
$$

(a) Show with the help of the Fourier-Motzkin elimination that the system (*) is not feasible (does not have a solution).
(b) Prove the infeasibility of the system (*) by using the (dual) alternative (II) of the Farkas Lemma (Theorem2.6).

Ex. 3

(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, be a C^{1}-function. Show that f is convex if and only if the following inequality holds:

$$
\left(\nabla f(x)-\nabla f\left(x^{\prime}\right)\right)^{T}\left(x-x^{\prime}\right) \geq 0 \text { for all } x, x^{\prime} \in \mathbb{R}^{n}
$$

(Hint: For " \Leftarrow " use the mean-value relation:
$f(x)-f\left(x^{\prime}\right)=\nabla f\left(x^{\prime}+\lambda\left(x-x^{\prime}\right)\right)^{T}\left(x-x^{\prime}\right)$ for some $\lambda \in(0,1)$.
Also recall that $\nabla f(x)$ is a column vector.
(b) Use part (a) to prove that the quadratic function $q(x):=\frac{1}{2} x^{T} A x$ (with symmetric $n \times n$ matrix A) is convex if and only if A is positive semidefinite.

Ex. 4

(a) Let $g: \mathbb{R}^{n} \rightarrow I, I \subset \mathbb{R}$ be convex and $f: I \rightarrow \mathbb{R}$ be convex and non-decreasing. Show that the composition $f \circ g(\mathbf{x})=f(g(\mathbf{x}))$ of the functions f and g is convex on \mathbb{R}^{n}.
(b) Show : The function $f(x)=e^{\|\mathbf{x}\|}$ is convex on \mathbb{R}^{n} (for any norm $\|\mathbf{x}\|$ on \mathbb{R}^{n}).

Ex. 5 Given the function $f(\mathbf{x})=\frac{1}{2} x_{1}^{4}+2 x_{1} x_{2}+2 x_{1}+\left(1+x_{2}\right)^{2}$
(a) Determine the critical points and the local minimizer(s) of f.
(b) Show that the local minimiser(s) are global minimizer(s) of f (on \mathbb{R}^{n}).

Ex. 6 Let be given a quadratic function $q(x)=\frac{1}{2} x^{T} A x+b^{T} x$ with positive definite $n \times n$-matrix A.
(a) Show that the point $\bar{x}:=-A^{-1} b$ is the unique global minimizer of $q\left(\right.$ on $\left.\mathbb{R}^{n}\right)$.
(b) Starting with $x_{0} \in \mathbb{R}^{n}$, let us apply the conjugate gradient method to solve $\min _{x \in \mathbb{R}^{n}} q(x)$ (as formulated in Theorem 5.3, with descent directions d_{0}, \ldots, d_{k}).
Show that the iteration point x_{k+1} is the (global) minimizer of the quadratic function $q(x)$ on the affine subspace

$$
S_{k}=\left\{x=x_{0}+\gamma_{0} d_{0}+. .+\gamma_{k} d_{k} \mid \gamma_{0}, . ., \gamma_{k} \in \mathbb{R}\right\}
$$

Points: $\quad \mathbf{3 6 + 4}+\mathbf{3}$ (extra points) $=\mathbf{4 3}$

$$
\text { 'tot' = } 36
$$

A copy of the lecture-sheets may be used during the examination. (The copies may not contain worked out exercises.) Good luck!

$$
g=\frac{p+4}{4}
$$

$$
\text { nodig: } p=20
$$

