Examination: Mathematical Programming I (191580250)

July 2, 2013, 8.45 -11.45

Ex.1

- (a) Show that $A \in \mathbb{R}^{n \times n}$ is positive definite if and only if A^{-1} is positive definite.
- (b) Let $A \in \mathbb{R}^{n \times n}$ be positive semidefinite and assume that for $x \in \mathbb{R}^n$ the relation $x^T A x = 0$ is satisfied. Show that then Ax = 0 holds.

Ex. 2 Consider the system of inequalities

- (a) Show with the help of the Fourier-Motzkin elimination that the system (*) is not feasible (does not have a solution).
- (b) Prove the infeasibility of the system (*) by using the (dual) alternative (II) of the Farkas Lemma (Theorem2.6).

Ex. 3

(a) Let $f : \mathbb{R}^n \to \mathbb{R}$, be a C^1 -function. Show that f is convex if and only if the following inequality holds:

$$\left(\nabla f(x) - \nabla f(x')\right)^T (x - x') \ge 0 \text{ for all } x, x' \in \mathbb{R}^n.$$

(*Hint: For* " \Leftarrow " use the mean-value relation: $f(x) - f(x') = \nabla f(x' + \lambda(x - x'))^T (x - x')$ for some $\lambda \in (0, 1)$. Also recall that $\nabla f(x)$ is a column vector.

(b) Use part (a) to prove that the quadratic function $q(x) := \frac{1}{2}x^T A x$ (with symmetric $n \times n$ -matrix A) is convex if and only if A is positive semidefinite.

Ex. 4

- (a) Let $g : \mathbb{R}^n \to I$, $I \subset \mathbb{R}$ be convex and $f : I \to \mathbb{R}$ be convex and non-decreasing. Show that the composition $f \circ g(\mathbf{x}) = f(g(\mathbf{x}))$ of the functions f and g is convex on \mathbb{R}^n .
- (b) Show : The function $f(x) = e^{\|\mathbf{x}\|}$ is convex on \mathbb{R}^n (for any norm $\|\mathbf{x}\|$ on \mathbb{R}^n).

Ex. 5 Given the function $f(\mathbf{x}) = \frac{1}{2}x_1^4 + 2x_1x_2 + 2x_1 + (1+x_2)^2$

- (a) Determine the critical points and the local minimizer(s) of f.
- (b) Show that the local minimiser(s) are global minimizer(s) of f (on \mathbb{R}^n).

Ex. 6 Let be given a quadratic function $q(x) = \frac{1}{2}x^T A x + b^T x$ with positive definite $n \times n$ -matrix A.

- (a) Show that the point $\overline{x} := -A^{-1}b$ is the unique global minimizer of q (on \mathbb{R}^n).
- (b) Starting with x₀ ∈ ℝⁿ, let us apply the conjugate gradient method to solve min_{x∈ℝⁿ} q(x) (as formulated in Theorem 5.3, with descent directions d₀,..., d_k).
 Show that the iteration point x_{k+1} is the (global) minimizer of the quadratic function q(x) on the affine subspace

$$S_{k} = \{ x = x_{0} + \gamma_{0}d_{0} + ... + \gamma_{k}d_{k} \mid \gamma_{0}, ..., \gamma_{k} \in \mathbb{R} \}$$

Points: 36+4+3 (extra points) =43

Ex.	. 1			3 pt. 7	Ex. 4	а	:	4 pt. <i>ち</i>	
				3 pt.		b	:	2 pt. 8	
Ex.				3 pt. <i>S</i>	Ex. 5			4 pt. <i>S</i>	
		b	:	3 pt. S		b	:	3 extra points.	((()
Ex.	. 3	а	:	4 pt.	Ex. 6	а	:	3 pt. 3	
		b	:	3 pt. 🧣		b	:	4 pt. <i>5</i>	

A copy of the lecture-sheets may be used during the examination. (The copies may not contain worked out exercises.) Good luck!

$$tot = 30$$

g = \$ p+9 4\$

nodig: p=20