Optimal Control (course code: 156162)

Date: 09-04-2013 Place: CR-2K Time: 08:45-11:45

1 test

1. Consider the nonlinear system

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 - x_1/x_2\\ 1 - x_1x_2 \end{bmatrix}$$
(1)

- (a) Determine all points of equilibrium
- (b) Determine the linearization at all points of equilibrium
- (c) Determine the type of stability of the nonlinear system at all points of equilibrium
- 2. Formulate the theorem of LaSalle.
- 3. Consider functions $x: [0,1] \to \mathbb{R}$ and cost

$$J(x) := \int_0^1 -x^2(t) - \dot{x}^2(t) + 2x(t) e^{2t} dt$$

- (a) Determine the Euler-Lagrange equation for this problem
- (b) Solve the Euler-Lagrange equation with x(0) = -1/3, x(1) = 1
- (c) Are the second order conditions of Legendre satisfied?
- (d) Is the solution $x_*(t)$ found in part (b) of this problem globally maximizing J(x) subject to x(0) = -1/3, x(1) = 1?
- 4. Consider the system

$$\dot{x}_1(t) = \cos(u(t))$$
 $x_1(0) = 0,$
 $\dot{x}_2(t) = 2\sin(u(t))$ $x_2(0) = 0$

with cost

$$J(x) = -x_1^2(1) - x_2^2(1).$$

The input is restricted to $u(t) \in [0, 1]$.

- (a) Determine the Hamiltonian
- (b) Determine the Hamiltonian equations for state, costate and input(you do not yet have to solve for *u*)
- (c) Show that the optimal $u_*(t)$ is constant.
- (d) Determine the optimal input $u_*(t)$ and $p_*(t)$.

5. Suppose

$$\dot{x}(t) = x(t) + u(t), \qquad x(0) = 1$$

and that

$$J(x) = \int_0^T x^2(t) + x(t)u(t) + \frac{1}{2}u^2(t) dt$$

for some arbitrary positive T.

- (a) Try a value function of the form $W(x, t) = x^2 P(t)$ and rewrite the resulting Hamilton-Jacobi-Bellman equations as a differential equation in P(t) including a final condition on P(T).
- (b) Does the differential equation for *P*(*t*) have a solution on [0, *T*]?[Hint: you do not need to solve the differential equation.]
- 6. Let Q > 0, R > 0. Suppose that (A, B) is controllable and let P be the LQ-solution of the algebraic Riccati equation. The optimal input is then static of the form $u_*(t) = Fx_*(t)$, for some matrix F, and so the optimal closed-loop system becomes

$$\dot{x}_*(t) = (A + BF)x_*(t).$$

Define $V(x) := x^T P x$.

- (a) What is *F*?
- (b) Show that V(x_{*}(t)) < 0 in the closed-loop system for every x_{*}(t) ≠ 0
- (c) The origin is an equilibrium of the closed loop. Is V(x) a Lyapunov function for the origin of the closed loop system?
 (Be as precise as possible in your derivation.)

problem:	1	2	3	4	5	6
points:	2+2+2	3	1+3+2+2	1+2+3+3	3+2	1+3+3

Exam grade is $1 + 9p/p_{\text{max}}$.

Euler-Lagrange:

$$\left(\frac{\partial}{\partial x} - \frac{d}{dt}\frac{\partial}{\partial \dot{x}}\right)F(t, x(t), \dot{x}(t)) = 0$$
Beltrami:
 ∂F

 $F - \frac{\partial T}{\partial \dot{x}} \dot{x} = C$

Standard Hamiltonian equations for initial conditioned state:

$$\dot{x} = \frac{\partial H}{\partial p}(x, p, u), \qquad x(0) = x_0,$$

$$\dot{p} = -\frac{\partial H}{\partial x}(x, p, u), \qquad p(T) = \frac{\partial S}{\partial x}(x(T))$$

LQ Riccati differential equation:

$$\dot{P}(t) = -P(t)A - A^T P(t) + P(t)BR^{-1}B^T P(t) - Q, \qquad P(T) = S$$
 Hamilton-Jacobi-Bellman:

 $\partial W(r,t) = [\partial W(r,t)]$

$$\frac{\partial W(x,t)}{\partial t} + \min_{\nu \in \mathbb{U}} \left[\frac{\partial W(x,t)}{\partial x^T} f(x,\nu) + L(x,\nu) \right] = 0, \qquad W(x,T) = S(x)$$

1

- (a) $x_1/x_2 = 1$ so $x_1 = x_2$. Also $x_1x_2 = 1$ so $x_1 = x_2 = \pm 1$: two equilibria (1,1) and (-1,-1)
- (b) Jacobian is $\begin{bmatrix} -1/x_2 & -x_1 \\ -x_2 & -x_1 \end{bmatrix}$. At $\bar{x} = (1,1)$ this gives $\dot{\delta}_x = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} \delta_x$ and at $\bar{x} = (-1,-1)$ this gives $\dot{\delta}_x = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \delta_x$
- (c) The eigenvalues of $\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$ are $-1 \pm i$. All real parts are < 0 so asymptotically stable. The eigenvalues of $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ are $1 \pm i$. There is an eigenvalue with real part > 0 so unstable.
- 2.

(a)
$$0 = \left(\frac{\partial}{\partial x} - \frac{d}{dt}\frac{\partial}{\partial \dot{x}}\right)(-x^2(t) - \dot{x}^2(t) + 2x(t)e^{2t}) = 2(-x(t) + \ddot{x}(t) + e^{2t}).$$

- (b) so $-\ddot{x}(t) + x(t) = e^{2t}$. Homogeneous solution is $c e^t + d e^{-t}$. Particular solution is $-\frac{1}{3}e^{2t}$. General solution hence is $x(t) = c e^t + d e^{-t} \frac{1}{3}e^{2t}$. Determine c, d from -1/3 = x(0) = c + d 1/3 and $1 = x(1) = c e + c e^{-1} 1/3e^2$. Hence c = -d and $c(e + e^{-1}) = 1 + e^2/3$...
- (c) $\partial^2 F / \partial x^2 = -2$ so not > 0 so not satisfied.
- (d) sufficient for global maximality is that the Hessian $H(t, x, \dot{x})$ is negative definite for all t, x, \dot{x} . We have $H = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$. All its eigenvalues are < 0 so *H* is negative definite and x_* hence globally maximizing.

3.

- (a) $H(x, p, u) = p_1 \cos(u) + p_2 2 \sin(u)$.
- (b) State equations are as given. Co-state equations are $\dot{p} = -\partial H(x, p, u)/\partial x = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ with final condition $p(1) = \begin{bmatrix} -2x_1(1)\\ -2x_2(1) \end{bmatrix}$. The input u_* minimizes pointwise: $H(x_*(t), p_*(t), u_*(t)) \leq H(x_*(t), p_*(t), v)$ for all $v \in [0, 1]$
- (c) the above shows that costate p(t) is constant. A bit sloppy: "it is known that the Hamiltonian

 $p_1 \cos(u_*(t)) + p_2 2 \sin(u_*(t))$

is constant over time (correct) and since p_1, p_2 are constant the u(t) will be constant as well." Less sloppy: at optimality p_1 and p_2 are not both zero (otherwise J = 0) so the Hamiltonian is a nonzero sinusoid $A\cos(u_*(t) + \phi)$. Pontryagin says that $u_*(t)$ minimizes this sinusoid. The minimum over [0,1] of this sinusoid is either attained at one or both of the boundaries 0,1, or at a unique minimizer (hence constant over time) in (0,1). So if the Hamiltonian at $u_* = 0$ differs from that at $u_* = 1$ the minimizing input $u_*(t)$ is constant¹ (d) since $u_*(t) = u_*$ is constant we have $x_1(1) = \cos(u_*), x_2(1) = 2\sin(u_*)$. So $J = -\cos(u_*)^2 - 4\sin^2(u_*) = 1 - 3\sin^2(u_*)$ which is minimal over $u_* \in [0, 1]$ for $u_* = 1$. Then $J = -1 - 3\sin^2(1)$ and $p_1(t) = -2\cos(1), p_2(t) = -2\sin(1)$

4.

(a) For $W(x, t) = P(t)x^2$ HJB becomes

$$x^{2}\dot{p} + \min_{v \in \mathbb{R}} (2xp(x+v) + x^{2} + xv + \frac{1}{2}v^{2}) = 0$$

(with p(T) = 0). Since function to be minimized is "positive definite parabola" minimizer is the solution of $0 = \frac{\partial}{\partial v}(2xp(x+v) + x^2 + xv + \frac{1}{2}v^2) = 2xp + x + v$ so v = -x(1+2p). Insert this into HJB:

$$x^{2}\dot{p} + (2xp(-2xp) - x^{2}(1+2p) + \frac{1}{2}x^{2}(1+2p)^{2} = 0$$

Division by x^2 and work out the products:

 $\dot{p} - 2p^2 + 1/2 = 0, \qquad p(T) = 0.$

(b) The RDE is $\dot{p}(t) = 2p^2(t) - 1/2$. Which is a standard RDE for A = 0, B = 1, R = 1/2, Q = 1/2, S = 0. Lecture notes says: if $Q, S \ge 0, R > 0$ then RDE has solution on [0, T]. That is the case so p(t) exists on [0, T]

5.

(a) $F = -R^{-1}B^{\mathrm{T}}P$

(b) V(x) is the cost-to-go for our optimal u = Fx. So according to chapter 1 we have $\dot{V}(x) = -L(x) = -(x^{T}Qx + u^{T}Ru)$. Since $u^{T}Ru \ge 0$ we have $\dot{V}(x) \le -x^{T}Qx < 0$ for every $x \ne 0$ (since Q > 0).

Alternative derivation:

$$V(x) = \dot{x}^{T} P x + x P \dot{x}$$

= $x^{T} (A + BF)^{T} P x + x^{T} P (A + BF) x$
= $x^{T} (A^{T} P + P A - 2PB^{T} R^{-1} BP) x$
= $x^{T} (-Q - PB^{T} R^{-1} BP) x$
= $-x^{T} Q x - u^{T} R u$.

(c) Clearly V(x) := x^TPx is C¹ and V(x) < 0 for all x ≠ 0 in the closed loop system. If P > 0 then V(x) is a positive definite function relative to 0 so then it is a Lyapunov function and stability of the closed loop follows.

So why is P > 0? If *P* is singular then $V(x_0) = x_0^T P x_0 = 0$ for some vector $x_0 \neq 0$. But as $\dot{V}(x_0) < 0$ for this x_0 we would have that $x(t)^T P x(t)$ is < 0 for t > 0. Not possible because $P \ge 0$ (says Riccati theory). So *P* nonsingular and $P \ge 0$. Therefore P > 0.

1.

¹If the minimum is attained at both $u_* = 0$ and $u_* = 1$ then the optimal $u_*(t)$ might switch between 0 and 1 throughout $t \in [0,1]$. Such switching cannot be optimal though...