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1 test

1. Consider the nonlinear system[
ẋ1

ẋ2

]
=

[
1−x1/x2

1−x1x2

]
(1)

(a) Determine all points of equilibrium

(b) Determine the linearization at all points of
equilibrium

(c) Determine the type of stability of the nonlinear
system at all points of equilibrium

2. Formulate the theorem of LaSalle.

3. Consider functions x : [0,1] →R and cost

J (x) :=
∫ 1

0
−x2(t )− ẋ2(t )+2x(t )e2t dt

(a) Determine the Euler-Lagrange equation for this
problem

(b) Solve the Euler-Lagrange equation with x(0) =
−1/3, x(1) = 1

(c) Are the second order conditions of Legendre
satisfied?

(d) Is the solution x∗(t ) found in part (b) of this
problem globally maximizing J (x) subject to
x(0) =−1/3, x(1) = 1?

4. Consider the system

ẋ1(t ) = cos(u(t )) x1(0) = 0,

ẋ2(t ) = 2sin(u(t )) x2(0) = 0

with cost

J (x) =−x2
1(1)−x2

2(1).

The input is restricted to u(t ) ∈ [0,1].

(a) Determine the Hamiltonian

(b) Determine the Hamiltonian equations for
state, costate and input
(you do not yet have to solve for u)

(c) Show that the optimal u∗(t ) is constant.

(d) Determine the optimal input u∗(t ) and p∗(t ).

5. Suppose

ẋ(t ) = x(t )+u(t ), x(0) = 1

and that

J (x) =
∫ T

0
x2(t )+x(t )u(t )+ 1

2
u2(t )dt

for some arbitrary positive T .

(a) Try a value function of the form W (x, t ) =
x2P (t ) and rewrite the resulting Hamilton-
Jacobi-Bellman equations as a differential
equation in P (t ) including a final condition on
P (T ).

(b) Does the differential equation for P (t ) have a
solution on [0,T ]?
[Hint: you do not need to solve the differential
equation.]

6. Let Q > 0,R > 0. Suppose that (A,B) is controllable
and let P be the LQ-solution of the algebraic Ric-
cati equation. The optimal input is then static of the
form u∗(t ) = F x∗(t ), for some matrix F , and so the
optimal closed-loop system becomes

ẋ∗(t ) = (A+BF )x∗(t ).

Define V (x) := xT P x.

(a) What is F ?

(b) Show that V̇ (x∗(t )) < 0 in the closed-loop sys-
tem for every x∗(t ) 6= 0

(c) The origin is an equilibrium of the closed loop.
Is V (x) a Lyapunov function for the origin of
the closed loop system?
(Be as precise as possible in your derivation.)

problem: 1 2 3 4 5 6

points: 2+2+2 3 1+3+2+2 1+2+3+3 3+2 1+3+3

Exam grade is 1+9p/pmax.

Euler-Lagrange:(
∂

∂x
− d

d t

∂

∂ẋ

)
F (t , x(t ), ẋ(t )) = 0

Beltrami:

F − ∂F

∂ẋ
ẋ =C

Standard Hamiltonian equations for initial conditioned state:

ẋ = ∂H

∂p
(x, p,u), x(0) = x0,

ṗ =−∂H

∂x
(x, p,u), p(T ) = ∂S

∂x
(x(T ))

LQ Riccati differential equation:

Ṗ (t ) =−P (t )A− AT P (t )+P (t )BR−1BT P (t )−Q, P (T ) = S

Hamilton-Jacobi-Bellman:

∂W (x, t )

∂t
+min

v∈U

[
∂W (x, t )

∂xT
f (x, v)+L(x, v)

]
= 0, W (x,T ) = S(x)

1



1.

(a) x1/x2 = 1 so x1 = x2. Also x1x2 = 1 so x1 = x2 =
±1: two equilibria (1,1) and (−1,−1)

(b) Jacobian is
[−1/x2 −x1−x2 −x1

]
. At x̄ = (1,1) this gives

δ̇x = [−1 1−1 −1

]
δx and at x̄ = (−1,−1) this gives

δ̇x = [
1 −1
1 1

]
δx

(c) The eigenvalues of
[−1 1−1 −1

]
are −1± i. All real

parts are < 0 so asymptotically stable. The
eigenvalues of

[
1 −1
1 1

]
are 1±i. There is an eigen-

value with real part > 0 so unstable.

2.

(a) 0 =
(
∂
∂x − d

d t
∂
∂ẋ

)
(−x2(t ) − ẋ2(t ) + 2x(t )e2t ) =

2(−x(t )+ ẍ(t )+e2t ).

(b) so −ẍ(t )+ x(t ) = e2t . Homogeneous solution is
c et +d e−t . Particular solution is − 1

3 e2t . Gen-
eral solution hence is x(t ) = c et +d e−t − 1

3 e2t .
Determine c,d from −1/3 = x(0) = c + d − 1/3
and 1 = x(1) = c e+c e−1−1/3e2. Hence c = −d
and c(e+e−1) = 1+e2 /3...

(c) ∂2F /∂x2 =−2 so not > 0 so not satisfied.

(d) sufficient for global maximality is that the Hes-
sian H(t , x, ẋ) is negative definite for all t , x, ẋ.
We have H = [−2 0

0 −2

]
. All its eigenvalues are < 0

so H is negative definite and x∗ hence globally
maximizing.

3.

(a) H(x, p,u) = p1 cos(u)+p22sin(u).

(b) State equations are as given. Co-state equa-
tions are ṗ = −∂H(x, p,u)/∂x = [

0
0

]
with fi-

nal condition p(1) = [−2x1(1)
−2x2(1)

]
. The input u∗

minimizes pointwise: H(x∗(t ), p∗(t ),u∗(t )) ≤
H(x∗(t ), p∗(t ), v) for all v ∈ [0,1]

(c) the above shows that costate p(t ) is constant.

A bit sloppy: “it is known that the Hamiltonian

p1 cos(u∗(t ))+p22sin(u∗(t ))

is constant over time (correct) and since p1, p2

are constant the u(t ) will be constant as well.”

Less sloppy: at optimality p1 and p2 are not
both zero (otherwise J = 0) so the Hamiltonian
is a nonzero sinusoid A cos(u∗(t ) + φ). Pon-
tryagin says that u∗(t ) minimizes this sinusoid.
The minimum over [0,1] of this sinusoid is ei-
ther attained at one or both of the boundaries
0,1, or at a unique minimizer (hence constant
over time) in (0,1). So if the Hamiltonian at
u∗ = 0 differs from that at u∗ = 1 the minimiz-
ing input u∗(t ) is constant1

1If the minimum is attained at both u∗ = 0 and u∗ = 1 then the op-
timal u∗(t ) might switch between 0 and 1 throughout t ∈ [0,1]. Such
switching cannot be optimal though...

(d) since u∗(t ) = u∗ is constant we have x1(1) =
cos(u∗), x2(1) = 2sin(u∗). So J = −cos(u∗)2 −
4sin2(u∗) = 1−3sin2(u∗) which is minimal over
u∗ ∈ [0,1] for u∗ = 1. Then J =−1−3sin2(1) and
p1(t ) =−2cos(1), p2(t ) =−2sin(1)

4.

(a) For W (x, t ) = P (t )x2 HJB becomes

x2ṗ +min
v∈R

(2xp(x + v)+x2 +xv + 1

2
v2) = 0

(with p(T ) = 0). Since function to be mini-
mized is “positive definite parabola” minimizer
is the solution of 0 = ∂

∂v (2xp(x + v)+ x2 + xv +
1
2 v2) = 2xp +x +v so v =−x(1+2p). Insert this
into HJB:

x2ṗ+(2xp(−2xp)−x2(1+2p)+1

2
x2(1+2p)2 = 0

Division by x2 and work out the products:

ṗ −2p2 +1/2 = 0, p(T ) = 0.

(b) The RDE is ṗ(t ) = 2p2(t )−1/2. Which is a stan-
dard RDE for A = 0,B = 1,R = 1/2,Q = 1/2,S =
0. Lecture notes says: if Q,S ≥ 0,R > 0 then RDE
has solution on [0,T ]. That is the case so p(t )
exists on [0,T ]

5.

(a) F =−R−1B TP

(b) V (x) is the cost-to-go for our optimal u = F x.
So according to chapter 1 we have V̇ (x) =
−L(x) = −(x TQx + uTRu). Since uTRu ≥ 0 we
have V̇ (x) ≤ −xT Qx < 0 for every x 6= 0 (since
Q > 0).

Alternative derivation:

V̇ (x) = ẋ TP x +xP ẋ

= x T(A+BF )TP x +x TP (A+BF )x

= x T(ATP +PA−2PB TR−1BP )x

= x T(−Q −PB TR−1BP )x

=−x TQx −uTRu.

(c) Clearly V (x) := xT P x is C 1 and V̇ (x) < 0 for all
x 6= 0 in the closed loop system. If P > 0 then
V (x) is a positive definite function relative to 0
so then it is a Lyapunov function and stability
of the closed loop follows.

So why is P > 0? If P is singular then V (x0) =
x T

0 P x0 = 0 for some vector x0 6= 0. But as
V̇ (x0) < 0 for this x0 we would have that
x(t )TP x(t ) is < 0 for t > 0. Not possible because
P ≥ 0 (says Riccati theory). So P nonsingular
and P ≥ 0. Therefore P > 0.
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