Optimal Control (course code: 191561620)

Date: 05-04-2015
Place: CR-3H
Time: 08:45-11:45

1. Consider the nonlinear system

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{1}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
-x_{1}+x_{2} \\
x_{1}-x_{2}-x_{1} x_{3} \\
-x_{3}+x_{1} x_{2}
\end{array}\right] .
$$

(a) Determine all points of equilibrium.
(b) Consider equilibrium $\bar{x}=(0,0,0)$. What does candidate Lyapunov function $V(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ allow us to conclude about the stability properties of this equilibrium?
2. Consider

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+x_{2} \\
& \dot{x}_{2}=-x_{1}-2 x_{2}
\end{aligned}
$$

with equilibrium $\bar{x}=(0,0)$. Determine a Lyapunov function $V(x)$ such that $\dot{V}(x)=-2 x_{1}^{2}-x_{2}^{2}$ and verify that this $V(x)$ is a strong Lyapunov function for this system.
3. Consider minimizing

$$
\int_{0}^{1} x(t) \dot{x}(t)^{2} \mathrm{~d} t
$$

over all functions $x(t)$ subject to $x(0)=4, x(1)=1$.
(a) Argue that if the optimal solution $x(t)$ is nonnegative for all $t \in[0,1]$ and $x(0)=4, x(1)=1$ that then $\dot{x}(t) \leq 0$ for all $t \in[0,1]$.
(b) Which function $x(t) \geq 0, \dot{x}(t) \leq 0$ solves the Beltrami identity and satisfies the boundary conditions $x(0)=4, x(1)=1$?
[Hint: you may want to use that $x^{\gamma}(t) \dot{x}(t)=a$ iff $\frac{x^{\gamma+1}(t)}{\gamma+1}=a t+b$ whenever $x(t)>0$ and $\gamma \neq-1$.]
(c) Is Legendre's second order condition satisfied?
4. Consider

$$
\dot{x}(t)=-x(t)+u(t), \quad x(0)=\mathrm{e}, \quad x(2)=1 .
$$

This is a system with both initial and final constraint. We want to minimize

$$
\int_{0}^{2}|u(t)| \mathrm{d} t
$$

with $u(t) \in[-1,1]$ for all $t \in[0,2]$. (Notice the absolute value in the cost function.)
(a) Determine the Hamiltonian H
(b) Express the optimal $u(t)$ in terms of the costate $p(t)$ and argue that at any moment in time we have either $u(t)=-1$ or $u(t)=0$ or $u(t)=+1$
(c) Determine the costate equations and its general solution $p(t)$
(d) Show that if $u(0) \neq 0$ then $u(t)$ is constant over $t \in(0,2]$.
(e) Determine the optimal input for the given initial and final constraint $x(0)=\mathrm{e}, x(2)=1$
5. Consider the optimal control problem

$$
\dot{x}(t)=u(t), \quad x(0)=x_{0}
$$

with $u(t) \in \mathbb{R}$ and cost

$$
J_{[0, \infty)}\left(x_{0}, u(\cdot)\right)=\int_{0}^{1} u^{2}(t) \mathrm{d} t+\int_{1}^{\infty} 4 x^{2}(t)+u^{2}(t) \mathrm{d} t
$$

(a) Assume first that $x(1)$ is given. Determine the optimal cost-to-go from $t=1$ on: $V(x(1), 1):=\min _{u} \int_{1}^{\infty} 4 x^{2}(t)+u^{2}(t) \mathrm{d} t$.
(b) Express the optimal cost $J_{[0, \infty)}\left(x_{0}, u(\cdot)\right)$ as $J_{[0, \infty)}\left(x_{0}, u(\cdot)\right)=\int_{0}^{1} u^{2}(t) \mathrm{d} t+$ $S x^{2}(1)$. (That is: what is S ?)
(c) Solve the optimal control problem: determine the optimal cost $J_{[0, \infty)}\left(x_{0}, u(\cdot)\right)$ and express the optimal input $u(t)$ as a function of $x(t)$. [Hint: see the hint of problem 3.(b)].

problem:	1	2	3	4	5
points:	$2+3$	4	$2+4+2$	$1+3+2+2+2$	$3+2+4$

Exam grade is $1+9 p / p_{\text {max }}$.

Euler-Lagrange:

$$
\left(\frac{\partial}{\partial x}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial}{\partial \dot{x}}\right) F(t, x(t), \dot{x}(t))=0
$$

Beltrami:

$$
F-\left(\frac{\partial F}{\partial \dot{x}}\right) \dot{x}=C
$$

Standard Hamiltonian equations for initial conditioned state:

$$
\begin{array}{ll}
\dot{x}=\frac{\partial H(x, p, u),}{\partial p} & x(0)=x_{0}, \\
\dot{p}=-\frac{\partial H(x, p, u),}{\partial x}, & p(T)=\frac{\partial S(x(T))}{\partial x}
\end{array}
$$

LQ Riccati differential equation:

$$
\dot{P}(t)=-P(t) A-A^{T} P(t)+P(t) B R^{-1} B^{T} P(t)-Q, \quad P(T)=S
$$

Hamilton-Jacobi-Bellman:

$$
\frac{\partial V(x, t)}{\partial t}+\min _{u \in \mathbb{U}}\left[\frac{\partial V(x, t)}{\partial x^{T}} f(x, u)+L(x, u)\right]=0, \quad V(x, T)=S(x)
$$

1. (a) only $(0,0,0)$
(b) For "ease of exposition" denote $\left(x_{1}, x_{2}, x_{3}\right)$ as (x, y, z). The V is continuously differentiable and positive definite. $\dot{V}(x)=2 x(-x+y)+2 y(x-$ $y-x z)+2 z(-z+x y)=2[-x x+x y+x y-y y-x y z+-z z+x y z]=-2(x x-$ $2 x y+y y+z z)=-2(x-y)^{2}-2 z^{2}$ so it is ≤ 0 but not <0 (for $z=0, x=$ $y \neq 0$). So stable but perhaps not asymptotically stable.
(You don't have to invoke LaSalle but if you do then you'll see that it is in fact asymptotically stable.)
2. the linear equation $P A+A^{\prime} P=\left[\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right]$ gives $P=\frac{1}{6}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$. Since $p_{11}=5 / 6>0$ and $\operatorname{det}(P)=1 / 4>0$ this matrix is positive definite, so $V:=x^{\prime} P x>0, \dot{V}<0$ and thus V is a strong Lyapunov function.
3. (a) Suppose $x(t)$ has a positive derivative, then connecting the local maxima/minima such as here in red

makes $\dot{x}=0$ on these regions so makes $\int x \dot{x}^{2}$ smaller. The optimal x hence has no local maxima/minima.
(b) Beltrami says $C=x \dot{x}^{2}-(x 2 \dot{x}) \dot{x}=-x \dot{x}^{2}$. So $x^{1 / 2} \dot{x}=a$ for some constant a. By the hint this means $x^{3 / 2}(t)=(3 / 2)(a t+b)$. Initial condition then becomes $4^{3 / 2}=(3 / 2) b$ so $8=(3 / 2) b$ so $b=16 / 3$. Final condition: $1^{3 / 2}=3 / 2(a+b)$ so $a=2 / 3-b=-14 / 3$. That is $x(t)=(8-7 t)^{2 / 3}$.
(c) Yes: $\frac{\partial^{2} F(t, x(t), \dot{x}(t))}{\partial \dot{x}^{2}}=2 x(t) \geq 0$ for all $t \in[0,1]$.
4. (a) $H=p(-x+u)+|u|$
(b) If $p>1$ then $p(-x+u)+|u|$ is minimal for $u=-1$. If $p<-1$ then $p(-x+u)+|u|$ is minimal for $u=+1$. If $-1<p<1$ then $p(-x+u)+|u|$ is minimal for $u=0$:

$$
u(t)= \begin{cases}-1 & \text { if } p(t)>1 \\ 0 & \text { if }|p(t)|<1 \\ +1 & \text { if } p(t)<-1\end{cases}
$$

(c) $\dot{p}=p$ without final condition (because there is a final condition on x). General solution is $p(t)=c \mathrm{e}^{t}$
(d) If $u(0) \neq 0$ then $u(t)= \pm 1$ so $\mp p(0) \geq 1$. Since $p(t)=p(0) \mathrm{e}^{t}$ and e^{t} increases we have that then $\mp p(t)>1$ for all $t>0$, so $u(t)= \pm 1$ for all $t>0$
(e) A bit tricky to explain:
part (d) says that $u(0)= \pm 1$ implies $u(t)= \pm 1$ for all $t \in[0,1]$. These are not feasible:

- If $u(t)=1$ for all time then $\dot{x}=-x+u, x(0)=\mathrm{e}$ gives $x(t)=1+$ $(x(0)-1) \mathrm{e}^{-t}>1$ for all time so not $x(2)=1$.
- If $u(t)=-1$ for all time then $\dot{x}=-x+u, x(0)=\mathrm{e}$ gives $x(t)=-1+$ $(x(0)+1) \mathrm{e}^{-t}$ for all time so not $x(2)=1$.
Hence $u(t)$ must be zero initially, so $|p(0)|<1$. As time increases the value $|p(t)|$ might become 1 at some time t_{0}. For $t>t_{0}$ the value of $u(t)$ must then be +1 or -1 for the rest of time. Since we need to end up at $x(2)=1$ this mean that if $t_{0}<2$:

$$
x_{u=1}(t)=\underbrace{1+(x(2)-1) \mathrm{e}^{2-t}}_{1}, \quad x_{u=-1}(t)=-1+(x(2)+1) \mathrm{e}^{2-t}
$$

for all $t \in\left[t_{0}, 2\right]$. See the plot:

Clearly the only possible solution is the red one: for $t \in[0,1]$ we have $u(t)=0$ and for $t \in[1,2]$ we have $u(t)=+1$.
5. (a) The Algebraic Riccati becomes $0=P^{2}-4$. So $P=2$: $V(x(1), 1)=2 x(1)^{2}$
(b) The principle of optimality says that $S x^{2}(1)=V(x(1), 1)=P x^{2}(1)$. So $S=P=2$
(c) The Riccati differential equation becomes

$$
\dot{P}=P^{2}, \quad P(1)=2 .
$$

This is of the form $P^{\gamma} \dot{P}=a$ for $\gamma=-2$ and $a=1$. so the hint of the hint says that $P^{-1}(t) /(-1)=t+b$ so $P(t)=1 /(-b-t)$. Given that $P(1)=2$ it follows that $b=-3 / 2$, so

$$
P(t)=\frac{1}{3 / 2-t}, \quad t \in[0,1] .
$$

The optimal cost hence is $x^{2}(0) P(0)=\frac{2}{3} x_{0}^{2}$ and $u(t)=-P(t) x(t)$ for $t \in[0,1]$ and $u(t)=-2 x(t)$ for $t>1$.

