
Optimal Control
(course code: 191561620)

Date: 05-04-2015
Place: CR-3H
Time: 08:45-11:45

1. Consider the nonlinear systemẋ1

ẋ2

ẋ3

=
 −x1 +x2

x1 −x2 −x1x3

−x3 +x1x2

 . (1)

(a) Determine all points of equilibrium.

(b) Consider equilibrium x̄ = (0,0,0). What does candidate Lyapunov func-
tion V (x) = x2

1 + x2
2 + x2

3 allow us to conclude about the stability prop-
erties of this equilibrium?

2. Consider

ẋ1 =−x1 +x2

ẋ2 =−x1 −2x2

with equilibrium x̄ = (0,0). Determine a Lyapunov function V (x) such that
V̇ (x) =−2x2

1 −x2
2 and verify that this V (x) is a strong Lyapunov function for

this system.

3. Consider minimizing∫ 1

0
x(t )ẋ(t )2 dt ,

over all functions x(t ) subject to x(0) = 4, x(1) = 1.

(a) Argue that if the optimal solution x(t ) is nonnegative for all t ∈ [0,1]
and x(0) = 4, x(1) = 1 that then ẋ(t ) ≤ 0 for all t ∈ [0,1].

(b) Which function x(t ) ≥ 0, ẋ(t ) ≤ 0 solves the Beltrami identity and sat-
isfies the boundary conditions x(0) = 4, x(1) = 1?

[Hint: you may want to use that xγ(t )ẋ(t ) = a iff xγ+1(t )
γ+1 = at +b when-

ever x(t ) > 0 and γ 6= −1.]

(c) Is Legendre’s second order condition satisfied?

4. Consider

ẋ(t ) =−x(t )+u(t ), x(0) = e, x(2) = 1.

This is a system with both initial and final constraint. We want to minimize∫ 2

0
|u(t )|dt

with u(t ) ∈ [−1,1] for all t ∈ [0,2]. (Notice the absolute value in the cost
function.)
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(a) Determine the Hamiltonian H

(b) Express the optimal u(t ) in terms of the costate p(t ) and argue that at
any moment in time we have either u(t ) =−1 or u(t ) = 0 or u(t ) =+1

(c) Determine the costate equations and its general solution p(t )

(d) Show that if u(0) 6= 0 then u(t ) is constant over t ∈ (0,2].

(e) Determine the optimal input for the given initial and final constraint
x(0) = e, x(2) = 1

5. Consider the optimal control problem

ẋ(t ) = u(t ), x(0) = x0

with u(t ) ∈R and cost

J[0,∞)(x0,u(·)) =
∫ 1

0
u2(t ) dt +

∫ ∞

1
4x2(t )+u2(t ) dt .

(a) Assume first that x(1) is given. Determine the optimal cost-to-go from
t = 1 on: V (x(1),1) := minu

∫ ∞
1 4x2(t )+u2(t ) dt .

(b) Express the optimal cost J[0,∞)(x0,u(·)) as J[0,∞)(x0,u(·)) = ∫ 1
0 u2(t ) dt+

Sx2(1). (That is: what is S?)

(c) Solve the optimal control problem: determine the optimal cost J[0,∞)(x0,u(·))
and express the optimal input u(t ) as a function of x(t ). [Hint: see the
hint of problem 3.(b)].

problem: 1 2 3 4 5

points: 2+3 4 2+4+2 1+3+2+2+2 3+2+4

Exam grade is 1+9p/pmax.

Euler-Lagrange:(
∂

∂x
− d

dt

∂

∂ẋ

)
F (t , x(t ), ẋ(t )) = 0

Beltrami:

F − (
∂F

∂ẋ
)ẋ =C

Standard Hamiltonian equations for initial conditioned state:

ẋ = ∂H(x, p,u),

∂p
x(0) = x0,

ṗ =−∂H(x, p,u),

∂x
, p(T ) = ∂S(x(T ))

∂x

LQ Riccati differential equation:

Ṗ (t ) =−P (t )A− AT P (t )+P (t )BR−1B T P (t )−Q, P (T ) = S

Hamilton-Jacobi-Bellman:

∂V (x, t )

∂t
+min

u∈U

[
∂V (x, t )

∂xT
f (x,u)+L(x,u)

]
= 0, V (x,T ) = S(x)
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1. (a) only (0,0,0)

(b) For “ease of exposition” denote (x1, x2, x3) as (x, y, z). The V is contin-
uously differentiable and positive definite. V̇ (x) = 2x(−x + y)+2y(x −
y−xz)+2z(−z+x y) = 2[−xx+x y+x y−y y−x y z+−zz+x y z] =−2(xx−
2x y + y y + zz) =−2(x − y)2 −2z2 so it is ≤ 0 but not < 0 (for z = 0, x =
y 6= 0). So stable but perhaps not asymptotically stable.

(You don’t have to invoke LaSalle but if you do then you’ll see that it
is in fact asymptotically stable.)

2. the linear equation PA+ A′P = [−2 0
0 −1

]
gives P = 1

6

[
5 1
1 2

]
. Since p11 = 5/6 > 0

and det(P ) = 1/4 > 0 this matrix is positive definite, so V := x ′P x > 0,V̇ < 0
and thus V is a strong Lyapunov function.

3. (a) Suppose x(t ) has a positive derivative, then connecting the local max-
ima/minima such as here in red

x(0)

x(1)

x(0)

x(1)

makes ẋ = 0 on these regions so makes
∫

xẋ2 smaller. The optimal x
hence has no local maxima/minima.

(b) Beltrami says C = xẋ2 − (x2ẋ)ẋ = −xẋ2. So x1/2ẋ = a for some con-
stant a. By the hint this means x3/2(t ) = (3/2)(at+b). Initial condition
then becomes 43/2 = (3/2)b so 8 = (3/2)b so b = 16/3. Final condition:
13/2 = 3/2(a +b) so a = 2/3−b =−14/3. That is x(t ) = (8−7t )2/3.

(c) Yes: ∂
2F (t ,x(t ),ẋ(t ))

∂ẋ2 = 2x(t ) ≥ 0 for all t ∈ [0,1].

4. (a) H = p(−x +u)+|u|
(b) If p > 1 then p(−x +u)+ |u| is minimal for u = −1. If p < −1 then

p(−x+u)+|u| is minimal for u =+1. If −1 < p < 1 then p(−x+u)+|u|
is minimal for u = 0:

u(t ) =


−1 if p(t ) > 1

0 if |p(t )| < 1

+1 if p(t ) <−1

(c) ṗ = p without final condition (because there is a final condition on x).
General solution is p(t ) = c et

(d) If u(0) 6= 0 then u(t ) = ±1 so ∓p(0) ≥ 1. Since p(t ) = p(0)et and et

increases we have that then ∓p(t ) > 1 for all t > 0, so u(t ) =±1 for all
t > 0

(e) A bit tricky to explain:
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part (d) says that u(0) = ±1 implies u(t ) = ±1 for all t ∈ [0,1]. These
are not feasible:

• If u(t ) = 1 for all time then ẋ = −x +u, x(0) = e gives x(t ) = 1+
(x(0)−1)e−t > 1 for all time so not x(2) = 1.

• If u(t ) =−1 for all time then ẋ =−x +u, x(0) = e gives x(t ) =−1+
(x(0)+1)e−t for all time so not x(2) = 1.

Hence u(t ) must be zero initially, so |p(0)| < 1. As time increases the
value |p(t )| might become 1 at some time t0. For t > t0 the value of
u(t ) must then be +1 or −1 for the rest of time. Since we need to end
up at x(2) = 1 this mean that if t0 < 2:

xu=1(t ) = 1+ (x(2)−1)e2−t︸ ︷︷ ︸
1

, xu=−1(t ) =−1+ (x(2)+1)e2−t

for all t ∈ [t0,2]. See the plot:

xu=0(t)

xu=1(t)

x
u=−

1 (t)

x(2) = 1

x(0) = e

e−1

Clearly the only possible solution is the red one: for t ∈ [0,1] we have
u(t ) = 0 and for t ∈ [1,2] we have u(t ) =+1.

5. (a) The Algebraic Riccati becomes 0 = P 2 −4. So P = 2: V (x(1),1) = 2x(1)2

(b) The principle of optimality says that Sx2(1) = V (x(1),1) = P x2(1). So
S = P = 2

(c) The Riccati differential equation becomes

Ṗ = P 2, P (1) = 2.

This is of the form PγṖ = a for γ=−2 and a = 1. so the hint of the hint
says that P−1(t )/(−1) = t +b so P (t ) = 1/(−b− t ). Given that P (1) = 2 it
follows that b =−3/2, so

P (t ) = 1

3/2− t
, t ∈ [0,1].

The optimal cost hence is x2(0)P (0) = 2
3 x2

0 and u(t ) = −P (t )x(t ) for
t ∈ [0,1] and u(t ) =−2x(t ) for t > 1.
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