Optimal Control (course code: 191561620)

Date: 12-04-2017
Place: Sports centre "Hal 1"
Time: 08:45-11:45

1. Consider

$$
\begin{aligned}
& \dot{x}_{1}=-3 x_{1}+2 x_{2} \\
& \dot{x}_{2}=-x_{1}
\end{aligned}
$$

with equilibrium $\bar{x}=(0,0)$. Determine a Lyapunov function $V(x)$ such that $\dot{V}(x)=-x_{1}^{2}-x_{2}^{2}$ and verify that this $V(x)$ is a strong Lyapunov function for this system.
2. Formulate LaSalle’s invariance principle.
3. Consider the cost function

$$
\frac{1}{2} x(1)+\int_{0}^{1}(\dot{x}(t))^{4} \mathrm{~d} t
$$

(a) Minimize this cost over all $x(t)$ subject to $x(0)=1$ and $x(1)=0$.
(b) Is Legendre's second-order condition for optimality satisfied?
(c) Minimize this cost over all $x(t)$ subject to $x(0)=1$ but with a free endpoint $x(1)$.
4. Consider

$$
\begin{array}{ll}
\dot{x}_{1}(t)=-x_{1}(t)+u(t), & x_{1}(0)=0, \quad x_{1}(1)=1 / 2, \\
\dot{x}_{2}(t)=x_{1}(t), & x_{2}(0)=0 .
\end{array}
$$

Here $u(t)$ is the flow of water in the first reservoir, $x_{1}(t)$ is the level in the first reservoir and $x_{2}(t)$ is the level in the second reservoir. The inflow $u(t)$ can not be negative and can be at most one:

$$
u(t) \in[0,1]
$$

We want to maximize $x_{2}(1)$ subject to the initial conditions $x_{1}(0)=x_{2}(0)=0$ and a final condition on the first reservoir $x_{1}(1)=1 / 2$.
(a) Determine the cost function J and the Hamiltonian H.
(b) Determine the costate equations and its general solution $p(t)$.
(c) How often on $t \in[0,1]$ does the optimal $u_{*}(t)$ switch from 1 to 0 ? How often on $t \in[0,1]$ does the optimal $u_{*}(t)$ switch from 0 to 1 ?
(d) Sketch the graph for $t \in[0,1]$ of the optimal input $u_{*}(t)$ and the optimal $x_{1}(t)$ and $p_{1}(t)$. (A sketch suffices because an exact formula for the switching time(s) may be hard to find.)
5. Suppose that

$$
\dot{x}(t)=u(t) x(t), \quad x(0)=x_{0}>0
$$

and that

$$
u(t) \in[0,1]
$$

for all time and that the cost function is

$$
J_{[0,3]}\left(x_{0}, u(\cdot)\right)=x(3)+\int_{0}^{3}(u(t)-1) x(t) \mathrm{d} t .
$$

(a) Try as value function a function of the form $V(x, t)=q(t) x$ and with it determine the Hamilton-Jacobi-Bellmann equations.
(b) Express the candidate optimal $u_{*}(t)$ as a function of $q(t)$ (Hint: $x(t)$ is always positive.)
(c) Determine $q(t)$ for all $t \in[0,3]$.
(d) Determine the optimal $u_{*}(t)$ explicitly as a function of time and argue that this is the true optimal control (so not just the "candidate" optimal control).
(e) What is the optimal cost $J_{[0,3]}\left(x_{0}, u_{*}(\cdot)\right)$?
6. Consider the optimal control problem

$$
\dot{x}(t)=x(t)+u(t), \quad x(0)=x_{0}
$$

with $u(t) \in \mathbb{R}$ and cost

$$
J_{[0, \infty)}\left(x_{0}, u(\cdot)\right)=\int_{0}^{\infty} 3 x^{2}(t)+u^{2}(t) \mathrm{d} t .
$$

(a) Determine the corresponding Algebraic Riccati Equation.
(b) Determine the optimal input $u(t)$ as a function of $x(t)$.
(c) Determine the optimal cost.

problem:	1	2	3	4	5	6
points:	4	3	$2+2+2$	$2+2+2+2$	$2+2+3+2+2$	$1+2+1$

Exam grade is $1+9 p / p_{\text {max }}$.

Euler-Lagrange eqn: $\left(\frac{\partial}{\partial x}-\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial}{\partial \dot{x}}\right) F(t, x(t), \dot{x}(t))=0$
Beltrami identity: $F-\left(\frac{\partial F}{\partial \dot{x}}\right) \dot{x}=C$
Standard Hamiltonian eqn:

$$
\begin{array}{ll}
\dot{x}=\frac{\partial H(x, p, u),}{\partial p} & x(0)=x_{0}, \\
\dot{p}=-\frac{\partial H(x, p, u),}{\partial x} & p(T)=\frac{\partial S(x(T))}{\partial x}
\end{array}
$$

LQ Riccati differential eqn: $\quad \dot{P}(t)=-P(t) A-A^{\mathrm{T}} P(t)+P(t) B R^{-1} B^{\mathrm{T}} P(t)-Q, \quad P(T)=S$

$$
\text { HJB eqn: } \quad \frac{\partial V(x, t)}{\partial t}+\min _{u \in \mathbb{U}}\left[\frac{\partial V(x, t)}{\partial x^{T}} f(x, u)+L(x, u)\right]=0, \quad V(x, T)=S(x)
$$

1. So we need to find a matrix P such that $P A+A^{\mathrm{T}} P=-I$ for then $\dot{V}(x)=$ $-x^{\mathrm{T}} I x=-x_{1}^{2}-x_{2}^{2}$.

$$
\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right]\left[\begin{array}{ll}
-3 & 2 \\
-1 & 0
\end{array}\right]+\left[\begin{array}{cc}
-3 & -1 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

This gives

$$
P=\frac{1}{4}\left[\begin{array}{cc}
1 & -1 \\
-1 & 5
\end{array}\right]
$$

Since $P_{11}>0$ and $\operatorname{det}(P)=1 / 4>0$ it is positive definite hence a strong Lyapunov function.
2. See lecture notes.
3. (a) Notice that the terminal cost $\frac{1}{2} x(1)$ plays no role here because we fix $x(1)=0$. Euler-Lagrange gives $0=-\frac{\mathrm{d}}{\mathrm{d} t} 4 \dot{x}^{3}=-12 \dot{x}^{2} \ddot{x}$. So either x is constant or linear at any moment in time. Hence $x(t)=a t+b$. Given the initial $x(0)=1$ and $x(1)=0$ this gives $x(t)=1-t$.
(b) $\left(\partial^{2} F\right) /\left(\partial \dot{x}^{2}\right)=12 \dot{x}^{2}$ so ≥ 0. So, yes, it is satisfied.
(c) Now the free end-point enters our story: $\partial F / \partial \dot{x}+\partial S / \partial x$ should be zero at the final time. This gives $4 \dot{x}^{3}+\frac{1}{2}=0$ so $\dot{x}=-1 / 2$ at the final time. Since EL says $x(t)=a t+b$ it means that $\dot{x}=-1 / 2$ all the time: $x(t)=$ $1-t / 2$.
If you forgot the free endpoint formula you can also use that $x(t)=$ $1-c t$ (because of Euler-Lagrange and $x(0)=1$) and then minimize the resulting cost $J=(1-c) / 2+c^{4}$ over all c which, again, is minimal iff $c=1 / 2$, so $x(t)=1-t / 2$.
4. (a) There are two choices. Either you pick $J_{a}=-x_{2}(1)$ and then $H=$ $p_{1}\left(-x_{1}+u\right)+p_{2} x_{1}$ or you pick $J_{b}=\int x_{1}$ and then $H_{b}=p_{1}\left(-x_{1}+u\right)+$ $p_{2} x_{1}+x_{1}$.
(b) The choice also affects the co-state equations. For J_{a}, H_{a} we get

$$
\dot{p}_{1}=p_{1}-p_{2}, \quad \dot{p}_{2}=0, \quad p_{2}(1)=-1
$$

The general solution is $p_{2}(t)=-1$ for all time and $p_{1}(t)=-1+c \mathrm{e}^{t}$ For the other you get $\dot{p}_{1}=p_{1}-p_{2}-1, \dot{p}_{2}=0, p_{2}(1)=0$ and then the general solution is $p_{2}(t)=0$ for all t and the same p_{1} as in the other case: $p_{1}(t)=-1+c \mathrm{e}^{t}$.
(c) The optimal u minimizes the Hamiltonian so

$$
u(t)= \begin{cases}1 & \text { if } p_{1}(t)<0 \\ 0 & \text { if } p_{1}(t)>0\end{cases}
$$

Since $p_{1}(t)=-1+c \mathrm{e}^{t}$ the p_{1} can switch sign at most once (from negative to positive). So u can switch at most once (from 1 to 0).
(d) So $u(t)=1$ on some $\left[0, t_{s}\right]$ and then 0 on $\left[t_{s}, 1\right]$. On $\left[0, t_{s}\right]$ we then have $\dot{x}=-x+1$ so $x_{1}=1-\mathrm{e}^{-t}$ which grows in the direction of 1 and then on $\left[t_{s}, 1\right]$ the $x_{1}(t)$ satisfies $\dot{x}_{1}=-x_{1}$ so decays exponentially. This gives something like:

Explanation: there is a unique t_{s} for which $x_{1}(1)=1 / 2$. Then c in $p_{1}(t)=-1+c \mathrm{e}^{t}$ is such that $p_{1}(t)$ switches sign at this t_{s}.
(Actually, the switching time t_{s} can be calculated. It is $\ln (\mathrm{e} / 2+1)$ which is 0.8583 .. and then $c=1 /(\mathrm{e} / 2+1)$.)
5. (a) $x \dot{q}(t)+\min _{u \in[0,1]}(q(t) u x+(u-1) x)=0, q(3) x=x$
(b) Since $x>0$ we may cancel x from HBJ to obtain $\dot{q}(t)+\min _{u \in[0,1]}(q(t) u+$ $u-1)=0$. The $u(t)=0$ if $q(t)+1>0$ and $u(t)=1$ if $q(t)+1<0$
(c) since $q(3)=1$ we have $q(t)+1>0$ near the final time. So then $u=0$ which turns HJB into $\dot{q}(t)-1=0, q(3)=1$. So then $q(t)=t-2$. This is the solution on $[1,3]$ for then we still have $q(t)+1>0$. On $[0,1]$ we then get $u(t)=1$ so then HJB becomes $\dot{q}(t)+q(t)=0$ which given $q(1)=-1$ gives $q(t)=-\mathrm{e}^{1-t}$.
(d) $u(t)=1$ on $[0,1]$ and zero on $[1,3]$. Then $x(t)$ satisfies $\dot{x}=x u$ which is well defined for all $t \in[0,3]$. Then Chapter 4 says that the "candidate" is truly optimal
(e) and the optimal cost is $V\left(x_{0}, 0\right)=q(0) x_{0}=-\mathrm{e} x_{0}$.
6. (a) $-P A-A^{\prime} P+P B R^{-1} B^{\prime} P-Q=P^{2}-2 p-3=0$
(b) $P^{2}-2 P-3=(P-3)(P+1)$ so $P=3$ and $u=-R^{-1} B^{\prime} P=-3 x$
(c) $V\left(x_{0}, 0\right)=3 x_{0}^{2}$.

