
Optimal Control
(course code: 191561620)

Date: 12-04-2017
Place: Sports centre “Hal 1”
Time: 08:45-11:45

1. Consider

ẋ1 =−3x1 +2x2

ẋ2 =−x1

with equilibrium x̄ = (0,0). Determine a Lyapunov function V (x) such that
V̇ (x) =−x2

1 − x2
2 and verify that this V (x) is a strong Lyapunov function for

this system.

2. Formulate LaSalle’s invariance principle.

3. Consider the cost function

1

2
x(1)+

∫ 1

0
(ẋ(t ))4 dt .

(a) Minimize this cost over all x(t ) subject to x(0) = 1 and x(1) = 0.

(b) Is Legendre’s second-order condition for optimality satisfied?

(c) Minimize this cost over all x(t ) subject to x(0) = 1 but with a free end-
point x(1).

4. Consider

ẋ1(t ) =−x1(t )+u(t ), x1(0) = 0, x1(1) = 1/2,

ẋ2(t ) = x1(t ), x2(0) = 0.

Here u(t ) is the flow of water in the first reservoir, x1(t ) is the level in the
first reservoir and x2(t ) is the level in the second reservoir. The inflow u(t )
can not be negative and can be at most one:

u(t ) ∈ [0,1].

We want to maximize x2(1) subject to the initial conditions x1(0) = x2(0) = 0
and a final condition on the first reservoir x1(1) = 1/2.

(a) Determine the cost function J and the Hamiltonian H .

(b) Determine the costate equations and its general solution p(t ).

(c) How often on t ∈ [0,1] does the optimal u∗(t ) switch from 1 to 0? How
often on t ∈ [0,1] does the optimal u∗(t ) switch from 0 to 1?

(d) Sketch the graph for t ∈ [0,1] of the optimal input u∗(t ) and the op-
timal x1(t ) and p1(t ). (A sketch suffices because an exact formula for
the switching time(s) may be hard to find.)
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5. Suppose that

ẋ(t ) = u(t )x(t ), x(0) = x0 > 0

and that

u(t ) ∈ [0,1]

for all time and that the cost function is

J[0,3](x0,u(·)) = x(3)+
∫ 3

0
(u(t )−1)x(t )dt .

(a) Try as value function a function of the form V (x, t ) = q(t )x and with
it determine the Hamilton-Jacobi-Bellmann equations.

(b) Express the candidate optimal u∗(t ) as a function of q(t ) (Hint: x(t )
is always positive.)

(c) Determine q(t ) for all t ∈ [0,3].

(d) Determine the optimal u∗(t ) explicitly as a function of time and ar-
gue that this is the true optimal control (so not just the “candidate”
optimal control).

(e) What is the optimal cost J[0,3](x0,u∗(·))?

6. Consider the optimal control problem

ẋ(t ) = x(t )+u(t ), x(0) = x0

with u(t ) ∈R and cost

J[0,∞)(x0,u(·)) =
∫ ∞

0
3x2(t )+u2(t ) dt .

(a) Determine the corresponding Algebraic Riccati Equation.

(b) Determine the optimal input u(t ) as a function of x(t ).

(c) Determine the optimal cost.

problem: 1 2 3 4 5 6

points: 4 3 2+2+2 2+2+2+2 2+2+3+2+2 1+2+1

Exam grade is 1+9p/pmax.

Euler-Lagrange eqn:
(
∂
∂x − d

dt
∂
∂ẋ

)
F (t , x(t ), ẋ(t )) = 0

Beltrami identity: F − (∂F
∂ẋ )ẋ =C

Standard Hamiltonian eqn: ẋ = ∂H(x,p,u),
∂p x(0) = x0,

ṗ =−∂H(x,p,u),
∂x p(T ) = ∂S(x(T ))

∂x

LQ Riccati differential eqn: Ṗ (t ) =−P (t )A− ATP (t )+P (t )BR−1B TP (t )−Q, P (T ) = S

HJB eqn: ∂V (x,t )
∂t +min

u∈U

[
∂V (x,t )
∂x T f (x,u)+L(x,u)

]
= 0, V (x,T ) = S(x)
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1. So we need to find a matrix P such that PA + ATP = −I for then V̇ (x) =
−x T I x =−x2

1 −x2
2 .[

α β

β γ

][−3 2
−1 0

]
+

[−3 −1
2 0

][
α β

β γ

]
=

[−1 0
0 −1

]
This gives

P = 1

4

[
1 −1
−1 5

]
Since P11 > 0 and det(P ) = 1/4 > 0 it is positive definite hence a strong Lya-
punov function.

2. See lecture notes.

3. (a) Notice that the terminal cost 1
2 x(1) plays no role here because we fix

x(1) = 0. Euler-Lagrange gives 0 = − d
dt 4ẋ3 = −12ẋ2ẍ. So either x is

constant or linear at any moment in time. Hence x(t ) = at +b. Given
the initial x(0) = 1 and x(1) = 0 this gives x(t ) = 1− t .

(b) (∂2F )/(∂ẋ2) = 12ẋ2 so ≥ 0. So, yes, it is satisfied.

(c) Now the free end-point enters our story: ∂F /∂ẋ+∂S/∂x should be zero
at the final time. This gives 4ẋ3 + 1

2 = 0 so ẋ = −1/2 at the final time.
Since EL says x(t ) = at +b it means that ẋ =−1/2 all the time: x(t ) =
1− t/2.

If you forgot the free endpoint formula you can also use that x(t ) =
1 − ct (because of Euler-Lagrange and x(0) = 1) and then minimize
the resulting cost J = (1− c)/2+ c4 over all c which, again, is minimal
iff c = 1/2, so x(t ) = 1− t/2.

4. (a) There are two choices. Either you pick Ja = −x2(1) and then H =
p1(−x1 +u)+p2x1 or you pick Jb = ∫

x1 and then Hb = p1(−x1 +u)+
p2x1 +x1.

(b) The choice also affects the co-state equations. For Ja , Ha we get

ṗ1 = p1 −p2, ṗ2 = 0, p2(1) =−1

The general solution is p2(t ) =−1 for all time and p1(t ) =−1+ c et

For the other you get ṗ1 = p1 − p2 − 1, ṗ2 = 0, p2(1) = 0 and then the
general solution is p2(t ) = 0 for all t and the same p1 as in the other
case: p1(t ) =−1+ c et .

(c) The optimal u minimizes the Hamiltonian so

u(t ) =
{

1 if p1(t ) < 0

0 if p1(t ) > 0

Since p1(t ) =−1+ c et the p1 can switch sign at most once (from neg-
ative to positive). So u can switch at most once (from 1 to 0).
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(d) So u(t ) = 1 on some [0, ts] and then 0 on [ts ,1]. On [0, ts] we then
have ẋ = −x +1 so x1 = 1−e−t which grows in the direction of 1 and
then on [ts ,1] the x1(t ) satisfies ẋ1 =−x1 so decays exponentially. This
gives something like:

ts

1/2
x1

0 1 ts

u

0 1

1

ts

p1

0 1

Explanation: there is a unique ts for which x1(1) = 1/2. Then c in
p1(t ) =−1+ c et is such that p1(t ) switches sign at this ts .

(Actually, the switching time ts can be calculated. It is ln(e/2 + 1)
which is 0.8583.. and then c = 1/(e/2+1).)

5. (a) xq̇(t )+minu∈[0,1](q(t )ux + (u −1)x) = 0, q(3)x = x

(b) Since x > 0 we may cancel x from HBJ to obtain q̇(t )+minu∈[0,1](q(t )u+
u −1) = 0. The u(t ) = 0 if q(t )+1 > 0 and u(t ) = 1 if q(t )+1 < 0

(c) since q(3) = 1 we have q(t )+1 > 0 near the final time. So then u = 0
which turns HJB into q̇(t )−1 = 0, q(3) = 1. So then q(t ) = t −2. This
is the solution on [1,3] for then we still have q(t )+ 1 > 0. On [0,1]
we then get u(t ) = 1 so then HJB becomes q̇(t )+q(t ) = 0 which given
q(1) =−1 gives q(t ) =−e1−t .

(d) u(t ) = 1 on [0,1] and zero on [1,3]. Then x(t ) satisfies ẋ = xu which is
well defined for all t ∈ [0,3]. Then Chapter 4 says that the “candidate”
is truly optimal

(e) and the optimal cost is V (x0,0) = q(0)x0 =−e x0.

6. (a) −PA− A′P +PBR−1B ′P −Q = P 2 −2p −3 = 0

(b) P 2 −2P −3 = (P −3)(P +1) so P = 3 and u =−R−1B ′P =−3x

(c) V (x0,0) = 3x2
0 .
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