Optimal Control
(course code: 191561620)

Date: 12-04-2017
Place: Sports centre “Hal 1”
Time: 08:45-11:45

1. Consider

X1=-3x1+2x
Xp=—x1
with equilibrium X = (0,0). Determine a Lyapunov function V(x) such that

V(x) = —x§ — x5 and verify that this V(x) is a strong Lyapunov function for
this system.

2. Formulate LaSalle’s invariance principle.

3. Consider the cost function
1 L
—x(1)+f (x()* dt.
2 0

(a) Minimize this cost over all x(f) subject to x(0) =1 and x(1) =0.

(b) Is Legendre’s second-order condition for optimality satisfied?

(c) Minimize this cost over all x(#) subject to x(0) = 1 but with a free end-
point x(1).

4. Consider

%1(0) = —x1(2) + u(p), x100)=0, x(1)=1/2,
X (1) = x1(2), Xx2(0) =0.
Here u(t) is the flow of water in the first reservoir, x;(#) is the level in the

first reservoir and x,(¢) is the level in the second reservoir. The inflow ()
can not be negative and can be at most one:

u(t) €[0,1].

We want to maximize x» (1) subject to the initial conditions x; (0) = x2(0) =0
and a final condition on the first reservoir x; (1) = 1/2.

(a) Determine the cost function J and the Hamiltonian H.

(b) Determine the costate equations and its general solution p().

(c) How often on ¢ € [0, 1] does the optimal u, () switch from 1 to 0?2 How
often on ¢ € [0,1] does the optimal u, () switch from 0 to 1?

(d) Sketch the graph for t € [0, 1] of the optimal input u. () and the op-
timal x;(f) and p;(?). (A sketch suffices because an exact formula for
the switching time(s) may be hard to find.)



5. Suppose that
x(t) = u(t)x(), x(0)=x0>0
and that
u(t) € [0,1]

for all time and that the cost function is
3

Ji0,31 (X0, u(-)) = x(3) +f0 (u(t) — Dx(r)dt.

(a) Try as value function a function of the form V(x, t) = g(f)x and with
it determine the Hamilton-Jacobi-Bellmann equations.

(b) Express the candidate optimal u.(t) as a function of g(¢) (Hint: x(t)
is always positive.)

(c) Determine ¢(¢) for all £ € [0, 3].

(d) Determine the optimal u.(f) explicitly as a function of time and ar-
gue that this is the true optimal control (so not just the “candidate”
optimal control).

(e) What is the optimal cost Jjg 3 (X0, U« (-))?
6. Consider the optimal control problem
x(1) = x(2) + u(o), x(0) = xo

with u(#) € R and cost
J10,00) (x0, u(+)) =f0 3x%(0) + u? (1) dt.

(a) Determine the corresponding Algebraic Riccati Equation.
(b) Determine the optimal input u(#) as a function of x(t).

(c) Determine the optimal cost.

problem: | 1 | 2 3 4 5 6

points: | 4 | 3 | 24242 | 242+2+2 | 2+2+3+42+2 | 1+2+1

Exam grade is 1 + 9p/ pmax.

Euler-Lagrange eqn: (% - %%) F(t,x(t),x()=0

.. P OFy :.
Beltrami identity: F-(37)x=C

Standard Hamiltonian eqn: X = aH(;—‘;”m’ x(0) = xo,
O0H(x,p,u), OS(x(T
=-S5 pn=2GEE

LQ Riccati differential eqn: P(f) = —P(t)A— A"P(t)+ P(t)BR™'B"P(1)-Q, P(T)=S

HJB eqn: 20 4 min | 298D e, u) + Lx, w) | =0, V(x,T) = S(x)
uel



1. So we need to find a matrix P such that PA+ ATP = —I for then V(x) =
—x"Ix=-x}-x3.

I N F

5 7=l

This gives

11 -1
P-z[—l 5]

Since P;; >0 and det(P) = 1/4 > 0 it is positive definite hence a strong Lya-
punov function.

2. See lecture notes.

3.

(@)

(b)
(9]

(a)

(b)

(9]

Notice that the terminal cost %x(l) plays no role here because we fix
x(1) = 0. Euler-Lagrange gives 0 = — 4343 = —12%2%. So either x is
constant or linear at any moment in time. Hence x(¢) = at + b. Given
the initial x(0) =1 and x(1) = 0 this gives x(#) =1—1t.

(0%F)/(0x%) =12x% so = 0. So, yes, it is satisfied.

Now the free end-point enters our story: 0F/0x+0S/0x should be zero
at the final time. This gives 43 + % =0 so x = —1/2 at the final time.
Since EL says x(f) = at + b it means that x = —1/2 all the time: x(f) =
1-1¢/2.

If you forgot the free endpoint formula you can also use that x(¢) =
1 —ct (because of Euler-Lagrange and x(0) = 1) and then minimize
the resulting cost J = (1 —¢)/2 + c* over all ¢ which, again, is minimal
iff c=1/2,s0 x(£)=1-1/2.

There are two choices. Either you pick J, = —x2(1) and then H =
p1(=x1 + u) + p2x; or you pick J, = [x; and then Hj, = py(—x; + u) +
p2Xx1 + X1.

The choice also affects the co-state equations. For J,, H, we get

pr=p1—p2 p2=0, p(1)=-1

The general solution is p,(f) = —1 for all time and p; () = -1+ ce’

For the other you get py = p1 —p2—1,p2 =0, p2(1) = 0 and then the
general solution is p,(#) = 0 for all ¢ and the same p; as in the other
case: py(f)=—1+ce'.

The optimal u minimizes the Hamiltonian so

{1 if p1(6) <0
u(t) = )
0 if pr()>0

Since p;(t) = -1+ ce’ the p; can switch sign at most once (from neg-
ative to positive). So u can switch at most once (from 1 to 0).



X1

(d)

So u(t) = 1 on some [0, t;] and then 0 on [z, 1]. On [0, t;] we then
have ¥ = —x+1 so x; = 1 —e~! which grows in the direction of 1 and
then on [fg,1] the x; (#) satisfies X; = —x; so decays exponentially. This
gives something like:

$1/2

. b/

(@)
(b)

(©)

(d)

(e)
(@
(b)
(9]

Explanation: there is a unique t; for which x;(1) = 1/2. Then c in
p1(t) = =1+ ce’ is such that p; () switches sign at this ;.

(Actually, the switching time t; can be calculated. It is In(e/2+1)
which is 0.8583.. and then c=1/(e/2+1).)
xq (1) + minyepo,(g(ux+(u-1)x)=0,g@8)x=x

Since x > 0 we may cancel x from HB]J to obtain q(#)+mineco,1)(q(f) u+
u—1)=0. The u(t)=0if g(£)+1>0and u(t) =1if q(t) +1<0

since ¢(3) =1 we have g(¢) +1 > 0 near the final time. So then u =0
which turns HJB into g(f) -1 =0,g(3) = 1. So then g(t) = t —2. This
is the solution on [1,3] for then we still have g(#) +1 > 0. On [0,1]
we then get u(f) =1 so then HJB becomes () + g(t) = 0 which given
q(1) = -1 gives q(t) = —e' .

u(t) =1 on [0,1] and zero on [1,3]. Then x(¢) satisfies x = xu which is
well defined for all 7 € [0,3]. Then Chapter 4 says that the “candidate”
is truly optimal

and the optimal cost is V (xp,0) = q(0)xy = — e Xp.
~PA-A'P+PBR'B'P-Q=P?-2p-3=0
P?2-2p-3=(P-3)(P+1)soP=3and u=-R'B'P=-3x
V(x0,0) = 3x3.



