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1. Consider the nonlinear system
%] [—sinGe)(d + x2)
ng - 4)61 - sin(2x2) )
(a) Determine all points of equilibrium.
(b) Determine the linearization at ¥ = (0, 0).

(c) Let A € R?*2 be the matrix of the linearization at x = (0, 0).

* What are the eigenvalues of A?
* Find all diagonal positive definite 2 x 2 matrices P such that

ATP+PA=-Q

with Q positive definite.

(d) Determine a Lyapunov function for the nonlinear system (1) at X = (0, 0).

2. What is the difference between global asymptotic stability and global attractivity?

3. Consider the cost
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(a) Find the function x(¢) that satisfies the Euler equation for this cost J, with initial

and final condition
x(0) =1, x(1) = B.

(Here B is a fixed real number.)
(b) Does this x(¢) satisfy a second order condition of minimality of J?
(c) Is there a 8 for which the cost function J is equal to zero? Explain.

(d) Derive the function x(¢) that satisfies the Euler-Lagrange equation and free end-
point condition for optimality of J subject to the initial condition x(0) = 1 and
free end point. (You must use the theory of Euler-Lagrange and free end-point.

Any other method is considered invalid.)

4. TIn control there is a trade-off between how aggressive we are allowed to control the
system and how fast the state should converge to zero. With infinite horizon LQ we
can analyze this trade-off. To this end let y be a positive parameter and consider the

cost

0
Lo b= / x2(t) + yu*(@) dt, with x(0) = 1 and u(z) e R
0

and assume that the state dynamics are
x(@) = —x() +u@).

Notice that u(¢) is not restricted in any sense: every real value u(¢) is allowed.



(a) Suppose y is very large and that «(¢) minimizes J, ,. Considering the formula
of J,, do you expect that the u(¢) will be “large” or “small”?

(b) Write down the Algebraic Riccati Equation (ARE)
(c) Determine all solutions P of the ARE

(d) Determine all positive solutions P of the ARE

(e) Determine the optimal cost J ,

() The lecture notes asserts that u(z) = —%Px (¢) is the optimal solution for the
positive solution P > 0 of the ARE.
* Determine optimal x(¢) and u(¢) forallz > 0
* Determine the two limits
lim u(t), lim Jy,,
y —00 y—00

of the optimal u(¢) and minimal cost J , .

* Are the limits in agreement with the answer of part (a) of this problem?
Specifically explain in words why the limits are not a surprise. (This prob-
lem can also be answered if you didn’t manage to determine the limits.)

(g) Now suppose we solve instead the finite horizon problem

te
min/ x2(t) + yu*(r) dt
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subject to the same dynamics x = —x + u, the same initial initial condition
x(0) = 1 and zero final condition x(t,) = 0. Argue that for every . > 0
the optimal cost J, can never be less than the optimal cost J,, , of the infinite
horizon problem.

5. Formulate Pontryagin’s minimum principle for the case that we optimize over the
input u as well as the final time #,.

| problem: 1 2 3 4 5

points: | 3+3+(2+3)+2 | 3 | 4424144 | 14242+142+(24+242)4+3 | 4

Exam grade is 1 + 9p/pmax.
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Hamiltonian equations (with H = pT f(x, u) + L(x, u)) for initial conditioned state:
. OH
X = —é;(x, psu), x(0) = xp,
. oH : oS
p==g-(pu), plie) = o= (x(ke)
LQ Riccati differential equation:

Pt)=-PA— ATP(t)+ P()BR™'BTP(t) - Q, P(te)=G

Bellman:

%(x, N+ ;2151{ [g;“%(x, 1) f(x,0)+ L(x, u)] =0, W(x,te) = S(x)



