Optimal Control
 (course code: 156162)

Date: 05-04-2011
Place: 08:45-11:45
Time: CR-2M

1. Consider the nonlinear system

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
\cos \left(x_{1}\right)\left(1-x_{2}\right) \\
x_{2}+\sin \left(2 x_{1}\right)
\end{array}\right]
$$

(a) Determine all points of equilibrium.
(b) Determine the linearization at $\bar{x}=(\pi / 2,0)$.
2. Show that $P=\left[\begin{array}{ll}4 & 1 \\ 1 & \frac{1}{2}\end{array}\right]$ is positive definite.
3. Determine a Lyapunov function for $\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}-2 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ at equilibrium $\bar{x}=$ $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
4. Formulate LaSalle's Invariance Principle.
5. Consider minimizing the cost function

$$
J:=\int_{0}^{1} \frac{1}{2} x^{2}(t)+\frac{1}{2}(\dot{x}(t)+x(t))^{2} d t
$$

(a) Find the function $x(t)$ that satisfies the Euler equation for this cost J, with initial and final condition

$$
x(0)=x_{0}, \quad x(1)=0
$$

(b) Does this $x(t)$ satisfy the necessary second order condition of minimality of J ?
6. Consider the linear system

$$
\dot{x}(t)=u(t), \quad x(0)=x_{0}
$$

with cost function

$$
J\left(x_{0}, u\right):=\int_{0}^{T} \frac{1}{2} x^{2}(t)+\frac{1}{2}(u(t)+x(t))^{2} d t
$$

We assume that $u(t)$ at any t is free to choose (i.e. $u(t) \in \mathbb{R}$).
(a) Write down the Bellman equation for this problem and show that a quadratic value function of the form $V(x, t)=P(t) x^{2}$ will do and derive the differential equation for $P(t)$.
(b) (deleted)g
(c) (deleted)
(d) (deleted)
(e) (deleted)
(f) (deleted)
7. Let Ψ, Φ be two real valued functions. Suppose a twice continuously differentiable x minimizes the cost function

$$
\Psi(x(T))-\Phi(x(0))+\int_{0}^{T} F(t, x(t), \dot{x}(t)) d t
$$

Show that this $x(t)$ satisfies the Euler equation. (Notice that this is a free initial- and end-point problem, meaning that both $x(0)$ and $x(T)$ are free to choose.)

problem:	1	2	3	4	5	6	7
points:	$3+3$	2	4	3	$5+2$	$6+3+2+2+2+3$	4

Exam grade is $1+9 p / p_{\text {max }}$.

Euler:

$$
\left(\frac{\partial}{\partial x}-\frac{d}{d t} \frac{\partial}{\partial \dot{x}}\right) F(t, x(t), \dot{x}(t))=0
$$

Beltrami:

$$
F-\frac{\partial F}{\partial \dot{x}} \dot{x}=C
$$

Hamiltonian equations (with $H=p^{T} f(x, u)+L(x, u)$) for initial conditioned state:

$$
\begin{array}{ll}
\dot{x}=\frac{\partial H}{\partial p}(x, p, u), & x(0)=x_{0}, \\
\dot{p}=-\frac{\partial H}{\partial x}(x, p, u), & p\left(t_{\mathrm{e}}\right)=\frac{\partial S}{\partial x}\left(x\left(t_{\mathrm{e}}\right)\right)
\end{array}
$$

LQ Riccati differential equation:

$$
\dot{P}(t)=-P(t) A-A^{T} P(t)+P(t) B R^{-1} B^{T} P(t)-Q, \quad P\left(t_{\mathrm{e}}\right)=G
$$

Bellman:

$$
\frac{\partial W}{\partial t}(x, t)+\min _{v \in \mathcal{U}}\left[\frac{\partial W}{\partial x^{T}}(x, t) f(x, v)+L(x, v)\right]=0, \quad W\left(x, t_{\mathrm{e}}\right)=S(x)
$$

1. (a) From the first equations we see that $x_{1}=\pi / 2+k \pi$ or $x_{2}=1$. If $x_{1}=$ $\pi / 2+k \pi$ then the 2 nd eqn says that $x_{2}=0$. If $x_{2}=1$ then the 2 nd eqn says that $x_{1}=-\pi / 4+n \pi$. So:

$$
(\pi / 2+k \pi, 0) \quad \text { and } \quad(-\pi / 4+n \pi, 1)
$$

(b) The linearization is $\dot{x}_{\Delta}=A x_{\Delta}$ with

$$
A:=\left.\left[\begin{array}{cc}
-\sin \left(x_{1}\right)\left(1-x_{2}\right) & -\cos \left(x_{1}\right) \\
2 \cos \left(2 x_{1}\right) & 1
\end{array}\right]\right|_{x=(\pi / 2,0)}=\left[\begin{array}{ll}
-1 & 0 \\
-2 & 1
\end{array}\right]
$$

2. $P_{11}=4>0$ and $\operatorname{det} P=4 \times \frac{1}{2}-1 \times 1=2-1=1>0$
3. Many answers possible here.

One method: solve, $A^{T} P+P A=-I$ for P. This gives three equations in three unknowns. The solution (derivation not shown) is

$$
\tilde{P}=\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right]
$$

By construction then $V(x):=x^{T} \underset{\sim}{P} x$ has time derivative $x^{T}(-I) x=-x_{1}^{2}-x_{2}^{2}$ which is <0 for all $x \neq 0$. This \tilde{P} is positive definite because $P_{11}=1 / 2>0$ and $\operatorname{det} \tilde{P}=1 / 2>0$. Hence $V(x)$ is a Lyapunov function.
4. See lecture notes (either Thm. 1.2.15 or Thm. 1.2.17 whichever you like)
5. (a)

$$
\begin{aligned}
0 & =\left(\frac{\partial}{\partial x}-\frac{d}{d t} \frac{\partial}{\partial \dot{x}}\right) F(t, x(t), \dot{x}(t)) \\
& =(x+(\dot{x}+x))-\frac{d}{d t}(\dot{x}+x) \\
& =2 x+\dot{x}-\ddot{x}-\dot{x} \\
& =2 x-\ddot{x} .
\end{aligned}
$$

Hence

$$
x(t)=\alpha \mathrm{e}^{\sqrt{2} t}+\beta \mathrm{e}^{-\sqrt{2} t}
$$

Now

$$
x_{0}=x(0)=\alpha+\beta, \quad 0=x(1)=\alpha \mathrm{e}^{\sqrt{2}}+\beta \mathrm{e}^{-\sqrt{2}}
$$

From the second it follows that $\alpha=-\beta \mathrm{e}^{-2 \sqrt{2}}$. The intitial condition now says $x_{0}=\beta\left(1-\mathrm{e}^{-2 \sqrt{2}}\right)$. Hence

$$
x(t)=\frac{-\mathrm{e}^{\sqrt{2}(t-2)}+\mathrm{e}^{-\sqrt{2} t}}{1-\mathrm{e}^{-2 \sqrt{2}}} x_{0}
$$

(b) $\frac{\partial^{2} F}{\partial \dot{x} \partial \dot{x}}=\frac{\partial(\dot{x}+x)}{\partial \dot{x}}=1>0$. It is postive, so answer is yes.
6. (a) Try $V(x, t)=x^{2} P_{t}$ in the Belmann equations (I use subscript in t for expository reasons):

$$
\begin{aligned}
0 & =\frac{\partial V}{\partial t}(x, t)+\min _{v \in \mathbb{R}}\left[\frac{\partial V}{\partial x}(x, t) f(x, v)+L(x, v)\right] \\
& =x^{2} \dot{P}_{t}+\min _{v \in \mathbb{R}}\left(2 x P_{t} v+\frac{1}{2} x^{2}+\frac{1}{2}(v+x)^{2}\right)
\end{aligned}
$$

the minimizing v follows from differentiation: $2 x P_{t}+(v+x)=0$, hence $v=-x\left(1+2 P_{t}\right)$. We continue with this v plugged in:

$$
=x^{2} \dot{P}_{t}+x P_{t}\left(-2 x\left(1+2 P_{t}\right)\right)+\frac{1}{2} x^{2}+\frac{1}{2}\left(2 x P_{t}\right)^{2}
$$

As in standard LQ, a common factor x^{2} can be cancelled from the Belmann equation to obtain:

$$
\begin{aligned}
0 & =\dot{P}_{t}-2 P_{t}\left(1+2 P_{t}\right)+\frac{1}{2}+2 P_{t}^{2} \\
& =\dot{P}_{t}-2 P_{t}^{2}-2 P_{t}+\frac{1}{2}
\end{aligned}
$$

and the final condition of P_{t} is $S(x)=0=x^{2} P_{T}$, i.e., $P_{T}=0$. This completes the Riccati differential equations. The solution P_{t} makes $V(x, t):=$ $x^{2} P_{t}$ satisfy the Bellman equation.
(b)
(c)
(d)
7. Method 1 (this is a bit vague): The Euler equation holds if we optimize over $x(t)$ with given initial and final condition. If we relax those two conditions then we optimize over a bigger set so the first order conditions for optimality become stronger (i.e. Euler holds and something more).
Method 2 (probably more convincing): Suppose $x(t)$ is an optimal solution. If Euler does not hold then a perturbation $x_{\delta}(t):=x(t)+\delta(t)$ with $\delta(0)=$ $\delta(T)=0$ exists that achieves a smaller value for $\int_{0}^{T} F\left(t, x_{\delta}(t), \dot{x}_{\delta}(t)\right) d t$. The $\Psi(x(T))-\Phi(x(0))$ are the same for x and x_{δ} because $\delta(0)=\delta(T)=0$. So then x_{δ} achieves a smaller value of

$$
\Psi(x(T))-\Phi(x(0))+\int_{0}^{T} F(t, x(t), \dot{x}(t)) d t
$$

as well.

