Optimal Control
(course code: 156162)

Date: 05-04-2011
Place: 08:45-11:45
Time: CR-2M

1. Consider the nonlinear system

i) _ [eos(wn)(1— )]
A= |

To T2 + Sin(2$1)

(a) Determine all points of equilibrium.

(b) Determine the linearization at z = (7/2,0).

1 1

2. Show that P = [
2

4 1
] is positive definite.

-2 1

I e . =
1 0} Lz] at equilibrium z =

3. Determine a Lyapunov function for [il] = [
2
0
ol
4. Formulate LaSalle’s Invariance Principle.

5. Consider minimizing the cost function

J = /01 1a?(t) + L(@(t) + 2(t)? dt

(a) Find the function x(t¢) that satisfies the Euler equation for this cost J,
with initial and final condition

z(0) = o, z(1) = 0.

(b) Does this z(t) satisfy the necessary second order condition of minimality
of J?

6. Consider the linear system
x(t) = u(t), z(0) = xo

with cost function
T
ﬂmmy:/ Le2(8) + Lu(t) + 2(t)) dt.
0

We assume that u(t) at any ¢ is free to choose (i.e. u(t) € R).

(a) Write down the Bellman equation for this problem and show that a
quadratic value function of the form V(z,t) = P(t)x? will do and de-
rive the differential equation for P(t).

(b) (deleted)g
(c) (deleted)



(d) (deleted)
(e) (deleted)
(f) (deleted)

7. Let ¥, ® be two real valued functions. Suppose a twice continuously differen-
tiable z minimizes the cost function

T
U(z(T)) — ®(x(0)) —i—/o F(t,x(t),z(t)) dt

Show that this x(t) satisfies the Euler equation. (Notice that this is a free
initial- and end-point problem, meaning that both x(0) and z(7T') are free to
choose.)

problem: | 1 |2 (34| 5 6 7

points: | 3+3 |2 4|3 |5+2 | 6+3+2+2+2+3 | 4

Exam grade is 1 4+ 9p/pmax-

Euler:
0 d 0 .
(% - %87:) F(t,z(t),#(t)) =0
Beltrami:

Hamiltonian equations (with H = p” f(x,u) + L(x,u)) for initial conditioned state:

. OH

T = 8—p(w,p,u), z(0) = zo,

. OH 08

p= —%(%P? u)7 p(te) - %(‘r(te))
LQ Riccati differential equation:

P(t)= —P(t)A— ATP(t) + P(t)BR™'BTP(t) — Q, P(te) =G

Bellman:
ow . [ow
W(m, t) + min ax—T(x, t)f(z,v) + L(z,v)| =0, W(z,te) = S(x)



1. (a) From the first equations we see that z1 = 7/2 + km or xzo = 1. If 21 =
/2 + km then the 2nd eqn says that o = 0. If z9 = 1 then the 2nd eqn
says that ©1 = —7/4 4+ nm. So:

(w/2 4 kmw,0) and (—n/4+ nm, 1)
(b) The linearization is a = Aza with

_|=sin(z1)(1 —22) —cos(x1)
A= 2C018(2:L'1) ; 1 1]

B [—1 0]
x=(m/2,0) -2 1

2. Pp=4>0anddetP=4x1-1x1=2-1=1>0

3. Many answers possible here.

One method: solve, ATP + PA = —I for P. This gives three equations in
three unknowns. The solution (derivation not shown) is

- [1/2 —1/2

P= [—1/2 3/2 ] '
By construction then V(x) := xTIfx has time derivative 27 (—1I)z = —2? — 23
which is < 0 for all x # 0. This P is positive definite because P;; = 1/2 > 0
and det P = 1/2 > 0. Hence V(z) is a Lyapunov function.

4. See lecture notes (either Thm. 1.2.15 or Thm. 1.2.17 whichever you like)

5. (a)
0= (;; — ii) F(t,xz(t),z(t))
= @+ (o)~ i+ a)
=2r+x -2 -7
=2z — .
Hence
x(t) = aeV? 4+ge V2
Now
z0=2(0)=a+p, 0=z(l)=ae2+B8e V2.
From the second it follows that o = —f3 e~2V2, The intitial condition now

says 2o = B(1 — e"2V2). Hence

N eV2(t-2) 4 = V2
.f[f( ) - 1 . 672\/5 Zo

(b) gz{% = 8(2;:6) =1 > 0. It is postive, so answer is yes.



6.

(a)

Try V(z,t) = 22P; in the Belmann equations (I use subscript in ¢ for
expository reasons):

0 o (x,t) + min g‘;(aj,t)f(a:, v) + L(z,v)

- E veER

= 2?P + min(20 P + 2% + 3(v + 7))
ve

the minimizing v follows from differentiation: 2zP; + (v + x) = 0, hence
v=—x(1+ 2P;). We continue with this v plugged in:

= 22P, + xP(—2x(1 + 2P,)) + 1% + 1 (22P,)?

2

As in standard LQ, a common factor z“ can be cancelled from the Bel-

mann equation to obtain:
0= P, —2P(1+2P,)+ 3 +2P?
=P, —2P} —2P,+1
and the final condition of P; is S(z) = 0 = 2%Pr, i.e., Pr = 0. This com-

pletes the Riccati differential equations. The solution P; makes V' (z,t) :=
22 P, satisfy the Bellman equation.

7. Method 1 (this is a bit vague): The Euler equation holds if we optimize over

x(t) with given initial and final condition. If we relax those two conditions
then we optimize over a bigger set so the first order conditions for optimality
become stronger (i.e. Euler holds and something more).

Method 2 (probably more convincing): Suppose x(t) is an optimal solution.
If Euler does not hold then a perturbation xs(t) := z(t) + 0(t) with §(0) =
d(T') = 0 exists that achieves a smaller value for fOT F(t,z5(t), z5(t)) dt. The
U(z(T)) — ®(x(0)) are the same for x and x5 because 6(0) = §(T) = 0. So
then zs achieves a smaller value of

T
U(z(T)) — @(x(0)) +/0 F(t,z(t), z(t)) dt

as well.



