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1. Consider the nonlinear system[
ẋ1

ẋ2

]
=

[
cos(x1)(1− x2)
x2 + sin(2x1)

]
.

(a) Determine all points of equilibrium.

(b) Determine the linearization at x̄ = (π/2, 0).

2. Show that P =

[
4 1
1 1

2

]
is positive definite.

3. Determine a Lyapunov function for

[
ẋ1

ẋ2

]
=

[
−2 1
−1 0

] [
x1

x2

]
at equilibrium x̄ =[

0
0

]
.

4. Formulate LaSalle’s Invariance Principle.

5. Consider minimizing the cost function

J :=

∫ 1

0

1
2x

2(t) + 1
2(ẋ(t) + x(t))2 dt

(a) Find the function x(t) that satisfies the Euler equation for this cost J ,
with initial and final condition

x(0) = x0, x(1) = 0.

(b) Does this x(t) satisfy the necessary second order condition of minimality
of J?

6. Consider the linear system

ẋ(t) = u(t), x(0) = x0

with cost function

J(x0, u) :=

∫ T

0

1
2x

2(t) + 1
2(u(t) + x(t))2 dt.

We assume that u(t) at any t is free to choose (i.e. u(t) ∈ R).

(a) Write down the Bellman equation for this problem and show that a
quadratic value function of the form V (x, t) = P (t)x2 will do and de-
rive the differential equation for P (t).

(b) (deleted)g

(c) (deleted)
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(d) (deleted)

(e) (deleted)

(f) (deleted)

7. Let Ψ,Φ be two real valued functions. Suppose a twice continuously differen-
tiable x minimizes the cost function

Ψ(x(T ))− Φ(x(0)) +

∫ T

0
F (t, x(t), ẋ(t)) dt

Show that this x(t) satisfies the Euler equation. (Notice that this is a free
initial- and end-point problem, meaning that both x(0) and x(T ) are free to
choose.)

problem: 1 2 3 4 5 6 7

points: 3+3 2 4 3 5+2 6+3+2+2+2+3 4

Exam grade is 1 + 9p/pmax.

Euler: (
∂

∂x
− d

dt

∂

∂ẋ

)
F (t, x(t), ẋ(t)) = 0

Beltrami:

F − ∂F

∂ẋ
ẋ = C

Hamiltonian equations (with H = pT f(x, u) + L(x, u)) for initial conditioned state:

ẋ =
∂H

∂p
(x, p, u), x(0) = x0,

ṗ = −∂H

∂x
(x, p, u), p(te) =

∂S

∂x
(x(te))

LQ Riccati differential equation:

Ṗ (t) = −P (t)A−ATP (t) + P (t)BR−1BTP (t) −Q, P (te) = G

Bellman:

∂W

∂t
(x, t) + min

v∈U

[
∂W

∂xT
(x, t)f(x, v) + L(x, v)

]
= 0, W (x, te) = S(x)
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1. (a) From the first equations we see that x1 = π/2 + kπ or x2 = 1. If x1 =
π/2 + kπ then the 2nd eqn says that x2 = 0. If x2 = 1 then the 2nd eqn
says that x1 = −π/4 + nπ. So:

(π/2 + kπ, 0) and (−π/4 + nπ, 1)

(b) The linearization is ẋ∆ = Ax∆ with

A :=

[
− sin(x1)(1− x2) − cos(x1)

2 cos(2x1) 1

]∣∣∣∣
x=(π/2,0)

=

[
−1 0
−2 1

]

2. P11 = 4 > 0 and detP = 4× 1
2 − 1× 1 = 2− 1 = 1 > 0

3. Many answers possible here.

One method: solve, ATP + PA = −I for P . This gives three equations in
three unknowns. The solution (derivation not shown) is

P̃ =

[
1/2 −1/2
−1/2 3/2

]
.

By construction then V (x) := xTPx has time derivative xT (−I)x = −x2
1 − x2

2

which is < 0 for all x 6= 0. This P̃ is positive definite because P11 = 1/2 > 0
and det P̃ = 1/2 > 0. Hence V (x) is a Lyapunov function.

4. See lecture notes (either Thm. 1.2.15 or Thm. 1.2.17 whichever you like)

5. (a)

0 =

(
∂

∂x
− d

dt

∂

∂ẋ

)
F (t, x(t), ẋ(t))

= (x+ (ẋ+ x))− d

dt
(ẋ+ x)

= 2x+ ẋ− ẍ− ẋ
= 2x− ẍ.

Hence

x(t) = α e
√

2t +β e−
√

2t

Now

x0 = x(0) = α+ β, 0 = x(1) = α e
√

2 +β e−
√

2 .

From the second it follows that α = −β e−2
√

2. The intitial condition now
says x0 = β(1− e−2

√
2). Hence

x(t) =
− e
√

2(t−2) + e−
√

2t

1− e−2
√

2
x0

(b) ∂2F
∂ẋ∂ẋ = ∂(ẋ+x)

∂ẋ = 1 > 0. It is postive, so answer is yes.
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6. (a) Try V (x, t) = x2Pt in the Belmann equations (I use subscript in t for
expository reasons):

0 =
∂V

∂t
(x, t) + min

v∈R

[
∂V

∂x
(x, t)f(x, v) + L(x, v)

]
= x2Ṗt + min

v∈R
(2xPtv + 1

2x
2 + 1

2(v + x)2)

the minimizing v follows from differentiation: 2xPt + (v + x) = 0, hence
v = −x(1 + 2Pt). We continue with this v plugged in:

= x2Ṗt + xPt(−2x(1 + 2Pt)) + 1
2x

2 + 1
2(2xPt)

2

As in standard LQ, a common factor x2 can be cancelled from the Bel-
mann equation to obtain:

0 = Ṗt − 2Pt(1 + 2Pt) + 1
2 + 2P 2

t

= Ṗt − 2P 2
t − 2Pt + 1

2

and the final condition of Pt is S(x) = 0 = x2PT , i.e., PT = 0. This com-
pletes the Riccati differential equations. The solution Pt makes V (x, t) :=
x2Pt satisfy the Bellman equation.

(b)

(c)

(d)

(e)

(f)

7. Method 1 (this is a bit vague): The Euler equation holds if we optimize over
x(t) with given initial and final condition. If we relax those two conditions
then we optimize over a bigger set so the first order conditions for optimality
become stronger (i.e. Euler holds and something more).

Method 2 (probably more convincing): Suppose x(t) is an optimal solution.
If Euler does not hold then a perturbation xδ(t) := x(t) + δ(t) with δ(0) =

δ(T ) = 0 exists that achieves a smaller value for
∫ T

0 F (t, xδ(t), ẋδ(t)) dt. The
Ψ(x(T )) − Φ(x(0)) are the same for x and xδ because δ(0) = δ(T ) = 0. So
then xδ achieves a smaller value of

Ψ(x(T ))− Φ(x(0)) +

∫ T

0
F (t, x(t), ẋ(t)) dt

as well.
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