Optimal Control
 (course code: 156162)

Date: 21-06-2011
Place: 13:45-16:45
Time: HB-2B

1. Consider the nonlinear system

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{1}+x_{1}^{2}-x_{2}^{2} \\
-2 x_{2}+2 x_{1} x_{2}
\end{array}\right]
$$

(a) Determine all points of equilibrium.
(b) Is the linearization at equilibrium $\bar{x}=(2,0)$ asymptotically stable?
(c) Argue that $\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=0\right\}$ is an invariant set.
(d) Is the nonlinear system at equilibrium $\bar{x}=(2,0)$ asymptotically stable?
2. Determine all $\alpha, \beta \in \mathbb{R}$ for which the matrix

$$
P=\left[\begin{array}{lll}
\alpha & 0 & 0 \\
0 & 1 & \beta \\
0 & \beta & 2
\end{array}\right]
$$

is positive definite.
3. One theorem in Chapter 1 on Lyapunov stability allows to test for global asymptotic stability. Formulate this theorem.
4. Consider minimizing the cost function

$$
J:=\int_{0}^{1} \frac{1}{2} x^{2}(t)+\frac{1}{2}(\dot{x}(t)+x(t))^{2} d t
$$

with initial $x(0)=x_{0}$ and free end-point $x(1)$.
(a) Determine the Euler equation for this problem.
(b) Determine the optimal $x(t)$.
5. Consider the linear system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \quad x(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

with cost function

$$
J:=-\frac{1}{4} x_{1}(T)+\int_{0}^{T} \frac{1}{2} u^{2}(t) d t .
$$

We allow any input-value: $u(t) \in \mathbb{R}$ for all $t \in[0, T]$.
(a) Determine the Hamiltonian equations (the formulae for state x and co-state p).
(b) Find the optimal co-state and the optimal input.
(c) Now suppose that the input is restricted to $u(t) \in[-1,1]$ for all time. Find the optimal input.
6. Consider the system with bounded input

$$
\dot{x}(t)=u(t), \quad x(0)=x_{0}, \quad u(t) \in[-1,1]
$$

on the finite time horizon $t \in[0, T]$ with cost function

$$
J=x^{2}(T)
$$

(a) Argue that the optimal input is

$$
u(t)= \begin{cases}+1 & \text { if } x(t)<0 \\ 0 & \text { if } x(t)=0 \\ -1 & \text { if } x(t)>0\end{cases}
$$

(b) Determine the value function $V(x, t)$.
[Hint: use the definition of value function and the optimal $u(t)$.]
(c) Verify that your $V(x, t)$ satisfies the Belmann equation.

problem:	1	2	3	4	5	6
points:	$3+3+2+2$	3	3	$2+4$	$3+3+2$	$2+4+2$

Exam grade is $1+9 p / p_{\text {max }}$.

Euler:

$$
\left(\frac{\partial}{\partial x}-\frac{d}{d t} \frac{\partial}{\partial \dot{x}}\right) F(t, x(t), \dot{x}(t))=0
$$

Beltrami:

$$
F-\frac{\partial F}{\partial \dot{x}} \dot{x}=C
$$

Standard Hamiltonian equations for initial conditioned state:

$$
\begin{array}{ll}
\dot{x}=\frac{\partial H}{\partial p}(x, p, u), & x(0)=x_{0} \\
\dot{p}=-\frac{\partial H}{\partial x}(x, p, u), & p\left(t_{\mathrm{e}}\right)=\frac{\partial S}{\partial x}\left(x\left(t_{\mathrm{e}}\right)\right)
\end{array}
$$

LQ Riccati differential equation:

$$
\dot{P}(t)=-P(t) A-A^{T} P(t)+P(t) B R^{-1} B^{T} P(t)-Q, \quad P\left(t_{\mathrm{e}}\right)=G
$$

Bellman:

$$
\frac{\partial W}{\partial t}(x, t)+\min _{v \in \mathcal{U}}\left[\frac{\partial W}{\partial x^{T}}(x, t) f(x, v)+L(x, v)\right]=0, \quad W\left(x, t_{\mathrm{e}}\right)=S(x)
$$

