Optimal Control
 (course code: 156162)

Date: 26-06-2012
Place: HB-2E
Time: 13:45-16:45

1. Consider the nonlinear system

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{1}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2}+x_{2} \\
x_{1}-x_{2}-2
\end{array}\right]
$$

(a) Determine all points of equilibrium
(b) Determine the linearization at all points of equilibrium
(c) Does the nonlinear system (1) have an unstable equilibrium?
(d) Does the nonlinear system (1) have a stable equilibrium?
2. Consider minimization of

$$
\int_{0}^{\pi} \dot{x}(t)^{2}+\cos (x(t)) \mathrm{d} t, \quad x(0)=0, \quad x(\pi)=1
$$

over all functions $x:[0, \pi] \rightarrow \mathbb{R}$.
(a) Determine the Euler equation for this problem
(b) Solve the Euler equation with $x(0)=0, x(\pi)=1$
(c) Are the second order conditions of Legendre satisfied?
3. Consider the second order system with mixed initial and final conditions

$$
\dot{x}_{1}(t)=u(t), \quad \dot{x}_{2}(t)=1, \quad x_{1}(0)=0, x_{2}(0)=0, x_{1}(1)=2
$$

and with cost

$$
J(u):=\int_{0}^{1} u^{2}(t)+4 x_{2}(t) u(t) \mathrm{d} t
$$

The input $u:[0,1] \rightarrow \mathbb{R}$ is not restricted, i.e. $u(t)$ can take on any real value.
(a) Determine the Hamiltonian for this problem
(b) Determine the differential equations for state x and co-state p, including the boundary conditions
(c) Express the candidate minimizing $u_{*}(t)$ as a function of $x_{*}(t), p_{*}(t)$
(d) Solve the equations for x_{*}, p_{*}, u_{*} (that is, determine $x_{*}(t), p_{*}(t), u_{*}(t)$ as explicit functions of time $t \in[0,1]$)
4. What is the definition of value function
5. Consider the system

$$
\dot{x}(t)=x(t)+u(t), \quad x(0)=x_{0}, \quad u(t) \in \mathbb{R}
$$

on the infinite time horizon with cost

$$
J_{\infty}\left(x_{0}, u\right)=\int_{0}^{\infty} \gamma^{2} x^{2}(t)+u^{2}(t) \mathrm{d} t
$$

Here γ is some nonzero real number.
(a) Determine all solutions P of the Algebraic Riccati Equation
(b) Determine the value function
(c) Find the optimal $u(t), x(t)$ explicitly as a function of time
(d) Explicitly determine the optimal solution $u(t), x(t)$ and value function for the case that $\gamma=0$. Also, which general result tells you that the optimal solution might be qualitatively different for $\gamma=0 \mathrm{com}$ pared to $\gamma \neq 0$?

problem:	1	2	3	4	5
points:	$2+2+1+1$	$2+3+1$	$1+2+2+3$	3	$1+2+2+3$

Exam grade is $1+9 p / p_{\text {max }}$.

Euler:

$$
\left(\frac{\partial}{\partial x}-\frac{d}{d t} \frac{\partial}{\partial \dot{x}}\right) F(t, x(t), \dot{x}(t))=0
$$

Beltrami:

$$
F-\frac{\partial F}{\partial \dot{x}} \dot{x}=C
$$

Standard Hamiltonian equations for initial conditioned state:

$$
\begin{array}{ll}
\dot{x}=\frac{\partial H}{\partial p}(x, p, u), & x(0)=x_{0}, \\
\dot{p}=-\frac{\partial H}{\partial x}(x, p, u), & p(T)=\frac{\partial S}{\partial x}(x(T))
\end{array}
$$

LQ Riccati differential equation:

$$
\dot{P}(t)=-P(t) A-A^{T} P(t)+P(t) B R^{-1} B^{T} P(t)-Q, \quad P(T)=G
$$

Bellman:

$$
\frac{\partial W(x, t)}{\partial t}+\min _{v \in \mathscr{U}}\left[\frac{\partial W(x, t)}{\partial x^{T}} f(x, v)+L(x, v)\right]=0, \quad W(x, T)=S(x)
$$

