Optimal Control
 (course code: 156162)

Date: 24-01-2013
Place: Citadel
Time: 13:45-16:45

1. Consider the nonlinear system

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{1}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2}+x_{2} \\
x_{1}-x_{2}-2
\end{array}\right]
$$

(a) Determine all points of equilibrium
(b) Determine the linearization at all points of equilibrium
(c) Does the nonlinear system (1) have an unstable equilibrium?
(d) Does the nonlinear system (1) have a stable equilibrium?
2. Consider minimization of

$$
\int_{0}^{T} \dot{x}(t)^{2}+4 t \dot{x}(t) \mathrm{d} t, \quad x(0)=0, \quad x(T)=x_{T}
$$

over all functions $x:[0, \pi] \rightarrow \mathbb{R}$.
(a) Determine the Euler equation for this problem
(b) Solve the Euler equation with $x(0)=0, x(T)=x_{T}$
(c) Are the second order conditions of Legendre satisfied?
3. Consider the system

$$
\dot{x}=x(1-u), \quad x(0)=1, \quad x(1)=4 \mathrm{e}
$$

with cost

$$
J=\int_{0}^{1}-\ln (x(t) u(t)) \mathrm{d} t
$$

Since $x(0)>0$ we have that $x(t) \geq 0$ for all t. For a well-defined cost we hence need $u(t) \in[0, \infty)$ but for the moment we allow any $u(t) \in \mathbb{R}$ and later verify that the optimal u_{*} is in fact >0.
(a) Determine the Hamiltonian
(b) Determine the Hamiltonian equations
(c) Show that $u=-1 /(p x)$ is the candidate optimal control
(d) Substitute this u into the Hamiltonian equations and solve for $p_{*}(t)$ and then $x_{*}(t)$ and subsequently $u_{*}(t)$
(e) Is $u_{*}(t)>0$ for all $t \in[0,1]$?
4. Formulate the principle of optimality as used in Dynamic Programming
5. Suppose

$$
\dot{x}=x+u, \quad x(0)=1
$$

and that

$$
J=2 x^{2}(T)+\int_{0}^{T} u^{2}(t) \mathrm{d} t
$$

for arbitrary positive T.
(a) Determine the Riccati differential equation
(b) Solve the Riccati differential equation
(c) Determine the optimal state x_{*} and input u_{*} explicitly as functions of time
(d) Verify that $J\left(1, u_{*}\right)=P(0)$

problem:	1	2	3	4	5
points:	$2+2+1+1$	$2+3+1$	$1+2+2+3$	3	$1+2+2+3$

Exam grade is $1+9 p / p_{\text {max }}$.

Euler:

$$
\left(\frac{\partial}{\partial x}-\frac{d}{d t} \frac{\partial}{\partial \dot{x}}\right) F(t, x(t), \dot{x}(t))=0
$$

Beltrami:

$$
F-\frac{\partial F}{\partial \dot{x}} \dot{x}=C
$$

Standard Hamiltonian equations for initial conditioned state:

$$
\begin{array}{ll}
\dot{x}=\frac{\partial H}{\partial p}(x, p, u), & x(0)=x_{0}, \\
\dot{p}=-\frac{\partial H}{\partial x}(x, p, u), & p(T)=\frac{\partial S}{\partial x}(x(T))
\end{array}
$$

LQ Riccati differential equation:

$$
\dot{P}(t)=-P(t) A-A^{T} P(t)+P(t) B R^{-1} B^{T} P(t)-Q, \quad P(T)=G
$$

Bellman:

$$
\frac{\partial W(x, t)}{\partial t}+\min _{\nu \in \mathscr{U}}\left[\frac{\partial W(x, t)}{\partial x^{T}} f(x, v)+L(x, v)\right]=0, \quad W(x, T)=S(x)
$$

