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SOLUTIONS

01. Consider the first order, quasilinear partial differential equation

−yUx + xUy = xU . (1)

(a) Determine the characteristics of (1).
(b) Find the solution to (1) corresponding to the data U(0,y) = 1, if it exists. (If it does not, explain why not.)

Solution. The PDE is first order, which points to the method of characteristics. Since it is also quasilinear, we will
formulate the characteristic equations in (x, y, u)−space:

ẋ = −y,
ẏ = x,

u̇ = xu.

The top subsystem for (x, y) is closed (i.e. does not involve u), so it can be solved independently:

ẋ = −y,
ẏ = x,

yielding
(
x(t), y(t)

)
=
(
C1 cos t+ C2 sin t , C1 sin t− C2 cos t

)
.

[Here, I take the solution for granted; you are expected to derive it, instead. This is nothing other than a harmonic
oscillator in phase space, of course.] Substituting into the ODE for u, we find

u̇ = xu = (C1 cos t+ C2 sin t)u,

which is separable:∫ u dū

ū
=

∫ t

x(t̄) dt̄ =

∫ t (
C1 cos t̄+ C2 sin t̄

)
dt̄, whence u(t) = C3 eC1 sin t−C2 cos t.

The characteristics are, thus, the collection of curves(
x(t), y(t), u(t)

)
=
(
C1 cos t+ C2 sin t , C1 sin t− C2 cos t , C3 eC1 sin t−C2 cos t

)
,

with (C1, C2, C3) arbitrary constants.

To incorporate the boundary data, we parameterize it as {(0, s, 1) | s} and demand that the characteristic curves above
lie on it at time zero:

x(0) = C1 = 0,
y(0) = −C2 = s,
u(0) = C3 e−C2 = 1,

with solution(C1, C2, C3) =
(

0,−s, e−s
)
.

It follows that the solution surface may be expressed parametrically as

x(t, s) = −s sin t,

y(t, s) = s cos t,

u(t, s) = e−ses cos t.



Remark. The PDE is actually linear, so it can also be solved by the method of characteristics on the (x, y)−plane.
This was evident above, already, in that the ODE system for (x, y) decouples from u. The characteristics on the
(x, y)−planes are obviously circles: recall that we are dealing with a harmonic oscillator on the phase plane or else
note that x2 + y2 = const. along characteristics. In polar coordinates, our BVP becomes

Uθ = r cos θ U, subject to U(r, π/2) = 1.

Plainly, the solution is

U(r, θ) = er(sin θ−1) or, with a slight abuse of notation, U(x, y) = ey−
√
x2+y2 .

02. Solve for U the following initial–boundary value problem for the diffusion equation:

Ut(x, t) = Uxx(x, t) , for all 0 < x < 1 and t > 0 ,

U(x,0) = sin
(
π
2 x
)

+ 3 , for all 0 ≤ x ≤ 1 ,

U(0, t) = 1 and Ux(1, t) = 0 , for all t > 0 .

(2)

[Note: Derive the eigenvalues λn and eigenfunctions Xn explicitly; do not just copy them from your notes/the
book. You may, nevertheless, assume that λn ≤ 0 for all n: that is, no positive eigenvalues exist.]

Solution. The first and crucial observation is that the problem does not satisfy homogeneous BCs, sinceU(0, t) = 1.
This implies that we must locate and subtract the steady state, which solves the problem

U ′′(x) = 0, subject to U(0) = 1 and U ′(1) = 0;

the solution is U∗(x) = 1. The deviation V (x, t) = U(x, t)−U∗(x) from the steady state satisfies, then, the problem

Vt(x, t) = Vxx(x, t) , for all 0 < x < 1 and t > 0 ,

V (x, 0) = sin
(
π
2 x
)

+ 2 , for all 0 ≤ x ≤ 1 ,

V (0, t) = 0 and Vx(1, t) = 0 , for all t > 0 .

(3)

The eigenvalue problem is

X ′′ = λX, subject to X(0) = X ′(1) = 0.

Using e.g. complex exponentials to solve the ODE, we find the equation

det

∣∣∣∣ 1 1

i
√
−λei

√
−λ −i

√
−λe−i

√
−λ

∣∣∣∣ = 0, whence λn = −(n− 1/2)2π2, n = 0,±1,±2, . . . .

The corresponding eigenfunctions are

Xn(x) = sin
(

(n− 1/2)πx
)

;

since X0 = X1, X−1 = X2, X−2 = X3 et cetera, we can restrict n to be natural:

λn = −(n− 1/2)2π2 and Xn(x) = sin
(

(n− 1/2)πx
)
, with n = 1, 2, 3, . . . .

The case λ = 0 must be treated apart. It yields no eigenfunction, hence λ = 0 is not an eigenvalue.

The general solution to the BVP satisfied by the deviation is, then,

V (x, t) =
∑
n≥1

CnTn(t)Xn(x), where Tn(t) = eλnt.

Using the IC, we find∑
n≥1

CnXn(x) = V (x, 0) = sin (πx/2) + 2 .



The precise values of the coefficients are hard to guess, so one must resort to the Fourier formulas. Once the constants
Cn have been found, the solution to the original problem is

U(x, t) = U∗(x) + V (x, t) = 1 +
∑
n≥1

Cne−(n−1/2)
2π2t sin

(
(n− 1/2)πx

)
.

03. Consider the following initial–boundary value problem for the wave equation on the half-line:

Utt(x, t) = Uxx(x, t) , for all x ≥ 0 and t > 0 ,

U(x,0) = f(x) , for all x ≥ 0 ,

Ut(x,0) = 0 , for all x ≥ 0 ,

U(0, t) = 0 , for all t > 0 .

(4)

(a) Solve the problem for f(x) = sin(x).
(b) Let x∗ > 0 be arbitrary but fixed. Find all functions f for which the displacement at x∗ is zero in the long
term— that is, for which there exists a time instant T such that U(x∗, t) = 0 for all t ≥ T.

Solution. The solution to the IBVP can be obtained by a simple application of the modified d’Alembert formula
treated in the reader and elsewhere. One readily finds

U(x, t) =


1

2

[
f(x+ ct) + f(x− ct)

]
, for t < x/c,

1

2

[
f(x+ ct)− f(ct− x)

]
, for t ≥ x/c.

Here in particular c = 1 and f(x) = sinx, so

U(x, t) =


1

2

[
sin(x+ t) + sin(x− t)

]
, for t < x,

1

2

[
sin(x+ t)− sin(t− x)

]
, for t ≥ x;

in other words, U(x, t) = sinx cos t, for all x, t ≥ 0.

To answer the second part of the question, we must select a form for our solution, that is, whether to use the form for
t < x or for t > x. Since x∗ is fixed and we are interested in arbitrarily large times, we focus on threshold times
T > x∗ so as to use the second formula:

U(x∗, t) =
1

2

[
f(x∗ + t)− f(t− x∗)

]
, for all t ≥ x∗.

The condition U(x∗, t) = 0 becomes, then,

f(t+ x∗) = f(t− x∗), for all t ≥ T > x∗.

Since t is variable and x∗ is a constant, this states nothing else than that f is 2x∗−periodic. Less strongly, the
(smallest) period of f may be 2x∗/n, for some n = 1, 2, 3, . . .. Additionally, it suffices that f has this property away
from the origin, i.e. that f(x + 2x∗) = f(x) for all x > X (with some fixed X). In retrospect, this makes a lot of
sense, both in light of part (a) and because of wave reflection at the boundary.

— SELECT AND SOLVE ONLY ONE OF THE FOLLOWING TWO PROBLEMS —

04. Consider the following first-order problem on the plane:

−yUx(x,y) + xUy(x,y) = g(x,y) , with (x,y) ∈ R2,

U(x,0) = f(x) , with x ≥ 0.
(5)

A smooth solution U(x, y) to this problem does not always exist. Explain in detail why this is so, formulate
conditions for f and g which guarantee that such a smooth solution U(x, y) exists and derive an explicit



formula for it (possibly in another coordinate system).

[Note: You are not asked to formulate the best possible conditions under which U exists; exercise your judge-
ment! Also, ‘explain in detail’ means that, ideally, you would submit a clearly—and cleanly—written, intel-
ligent discussion of the issue at hand with a balance between the quantitative (formulas) and the qualitative
(interpretation). In plain speak: neither a list of formulas without explanation nor wordy explanations without
actual mathematics.]

Solution. This is a linear problem, so we can use the method of characteristics on the xy−plane. We already did
that in our remark to problem 1 and found that polar coordinates suit the problem exceptionally well. In terms of
these, the problem reads

Uθ(r, θ) = G(θ), subject to U(r, 0) = F (r);

the connection between F,G and f, g are easy to derive. Plainly, the solution is

U(r, θ) = U(r, 0) + e
∫ θ
0 G(φ)dφ = F (r) + e

∫ θ
0 G(φ)dφ.

Any solution worth its salt in the classical sense must be differentiable. Nonetheless, depending on G, the solution
above may not even be continuous. Indeed, we should obviously demand that U(r, 2π) = U(r, 0) = F (r), since
θ = 0 and θ = 2π correspond to the same point on the xy−plane. This is only true if

∫ 2π
0 G(φ) = 0; this is easy to

translate in terms of g.

Intuitively, our PDE prescribed the rate of change of the U along each circle centered at the origin; this is evident
from its polar form. To make sure that the characteristic curves close, we must demand that the forcing term has zero
mean along each such circle; this is precisely the condition above.

05. Let Ω be the region outside the unit disk centered at the origin:

Ω =
{

(x, y) |x2 + y2 > 1
}
.

Naturally, the boundary ∂Ω is the unit circle:

∂Ω =
{

(x, y) |x2 + y2 = 1
}
.

Additionally, let U be the unique smooth and bounded solution to the following problem:

Uxx(x, y) + Uyy(x, y) = 0, for all (x, y) ∈ Ω,
U(x, y) = f(x, y), for all (x, y) ∈ ∂Ω.

(6)

Derive a formula for U(x, y) by using any method you wish.

[Hint: One way to proceed is by using our work in class and/or the book to rewrite (6) in polar coordinates (r, θ)
and then working in the coordinate system (s, θ) = (1/r, θ). If you need the expressions for Uxx + Uyy in polar
coordinates and/or Poisson’s formula for harmonic functions on a disk, you may assume them to be known.]

Solution. [This is a sketch; fill in the details.] The most expedient way to solve the problem is, indeed, to start
from the Laplacian in polar form. Changing from (r, θ) to (s, θ) is a matter of differentiation (think chain rule). The
Laplacian, expressed in (s, θ), turns out to have the same functional form with the Laplacian in polar form. Also, the
domain has now been transformed to the unit disk. Hence, Poisson’s formula applies and the solution is now known.
Expressing it in terms of the original quantities is an easy exercise.


