2023/2024, Q-2A

Give a suitable explanation of your answers!

The use of electronic devices is *not* allowed. A formula sheet is not handed out.

Question 1. Introduce polar coordinates (r, ϕ) defined by $x_1 = r \cos \phi$, $x_2 = r \sin \phi$. Assume that the function u does not depend on ϕ , i.e., u = u(r). Show that

$$\Delta u = \frac{1}{r} \frac{d}{dr} \left(r \frac{du}{dr} \right).$$

Question 2. Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with smooth boundary Γ . Consider the classical solutions u, v of the boundary value problems

$$-\Delta u + u = x$$
 in Ω , with $u = 0$ on Γ ,
 $-\Delta v + v = 1 + x$ in Ω , with $v = 0$ on Γ .

Show that u < v.

Question 3. Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with smooth boundary Γ , and let $f \in L^2(\Omega)$. Consider the Dirichlet problem

$$-\Delta u + u = f$$
 in Ω , with $u = 0$ on Γ .

- (a) Derive a variational formulation of the Dirichlet problem.
- (b) Prove existence and uniqueness of a weak solution of the Dirichlet problem.
- (c) Show that the weak solution of the Dirichlet problem depends continuously on the data f, i.e., derive a stability estimate.

Question 4. Let $x_i = ih$ with h = 1/M and i = 0, ..., M, be a partition of the interval (0, 1). Moreover, let $\Phi_i(x)$ be the associated hat functions (piecewise linear and continuous). Calculate the entries of the matrix $B \in \mathbb{R}^{M+1 \times M+1}$ defined by

$$B_{i,j} = \int_0^1 \Phi_i(x) \Phi'_j(x) dx, \qquad i, j \in \{0, \dots, M\}.$$

Remark: Note the derivative in the integral.

Question 5. Consider the initial-boundary value problem:

$$u_t - \Delta u + u = f \quad \text{in } \Omega \times (0, \infty),$$
 (1)

$$u = 0 \quad \text{on } \Gamma \times (0, \infty),$$
 (2)

$$u(\cdot,0) = g \quad \text{in } \Omega.$$
 (3)

(a) Let u be a classical solution of (1)–(3) with f=0. Use the energy method to show that

$$||u(t)|| \le e^{-t}||g||, \quad t \ge 0.$$

Hint: You may use that, if $y'(t) + ay(t) \le 0$ for a differentiable function $y(t) \ge 0$ and some a > 0, then $y(t) \le e^{-at}y(0)$.

(b) Let u now be a classical solution of (1)–(3) for some $f \in L^2(\Omega)$, i.e., f does not depend on t, and denote $z \in H^1_0(\Omega)$ the classical solution of

$$-\Delta z + z = f$$
 in Ω , with $z = 0$ on Γ .

Show exponential convergence of u to equilibrium, i.e.,

$$||u(t) - z|| \le e^{-t} ||g - z||, \quad t \ge 0.$$

Exam: Introduction to Partial Differential Equations (201700034)

P.L. Lederer and M. Schlottbom

24. Apr. 2024, 08.45 - 11.45

2023/2024, Q-2A

Question 6. Recall the finite element discretization of the heat equation, i.e., find $u_h \in C^1([0,T];S_h)$ such that

$$(u_h'(t), \chi) + (\nabla u_h(t), \nabla \chi) = (f(t), \chi) \quad \forall \chi \in S_h, \tag{4a}$$

$$u_h(0) = g_h. (4b)$$

- (a) Formulate the Euler backward scheme with time step k > 0 to discretize (4) in time. Denote the corresponding approximations $U^n \approx u_h(t_n)$ with $t_n = kn$.
- (b) Suppose f = 0. Show that

$$||U^n|| \le ||U^{n-1}||$$
 for all $n \ge 1$.

Question 7. Consider the initial value problem

$$u_t(x,t) + xu_x(x,t) = 0$$
 for $(x,t) \in \mathbb{R} \times (0,\infty)$,
 $u(x,0) = v(x)$ for $x \in \mathbb{R}$.

- (a) Solve the initial value problem by the methods of characteristics.
- (b) Assume that u(x,t) vanishes sufficiently fast for $|x| \to \infty$. Use the energy method to show that

$$||u(\cdot,t)|| = e^{t/2}||v||$$
 for $t \ge 0$.

Points:

Q1. 5 Q2. 4 Q3. (a) 2 Q4. 6 Q5. (a) 3 Q6. (a) 2 Q7. (a) 4 (b) 4 (b) 1 (b) 3 (b) 3

Total: 38 + 2 = 40 points

Grade: (achieved points +2)/4