Examination Partial Differential Equations

course 155010, 15 November 2000

1. Consider the linear first order PDE for u :

$$
\begin{equation*}
(1+t) u_{t}+\frac{1}{2}(1+x) u_{x}=-u \tag{1}
\end{equation*}
$$

in the quarter plane $x>0, t>0$, subject to the condition

$$
\begin{equation*}
u(x, 0)=\frac{1}{(1+x)^{2}}, \quad x>0 \tag{2}
\end{equation*}
$$

(a) Determine the equations for the characteristics, and sketch a few solution curves.
(b) In which part of the quarter plane, say D, is the solution determined by (2).
(c) Determine $u(x, t)$ in D.
2. Consider the $1-\mathrm{D}$ wave equation

$$
\begin{equation*}
u_{t t}=c^{2} u_{x x} \tag{3}
\end{equation*}
$$

for $t>0$ and $x \in \mathbb{R}$, subject to the initial condition

$$
\begin{equation*}
u(x, 0)=e^{-x^{2}}, x \in \mathbb{R} \tag{4}
\end{equation*}
$$

(a) If in addition $u_{t}(x, 0)=0$, for all $x \in \mathbb{R}$, then show that the solution consists of two humps like (4), half as high, one running to the left and one to the right as t increases.
(b) Determine $\psi(x)$ such that the additional initial condition

$$
\begin{equation*}
u_{t}(x, 0)=\psi(x) \tag{5}
\end{equation*}
$$

yields a solution that consists of only one hump running to the left, i.e. the solution is a function of $x+c t$ alone.
3. Given is the initial boundary value problem

$$
\begin{align*}
u_{t} & =u_{x x}, \quad 0<x<1, t>0 \\
u(0, t) & =u(1, t)=0, \quad t>0 \tag{6}\\
u(x, 0) & =\sin 3 \pi x, \quad 0 \leq x \leq 1
\end{align*}
$$

(a) Solve this problem by separation of variables
(b) Show that for all positive t

$$
\begin{equation*}
\int_{0}^{1} u(x, t)^{2} d x \leq \frac{1}{2} \tag{7}
\end{equation*}
$$

(c) Formulate the weak maximum principle and give the consequence for problem (6).
4. The bounded solution of the elliptic problem on the half plane

$$
\begin{align*}
u_{x x}+u_{y y} & =0, \quad-\infty<x<\infty, y>0 \\
u(x, 0) & =f(x), \quad-\infty<x<\infty \tag{8}
\end{align*}
$$

can be written in integral form as

$$
\begin{equation*}
u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(\xi)}{y^{2}+(\xi-x)^{2}} d \xi \tag{9}
\end{equation*}
$$

Now consider the problem on the quarter plane

$$
\begin{align*}
u_{x x}+u_{y y} & =0, \quad x>0, y>0 \\
u(x, 0) & =h(x), \quad x>0 \tag{10}\\
\frac{\partial u}{\partial x}(0, y) & =0, \quad y>0
\end{align*}
$$

Extend problem (10) to the half plane and make use of (9) to find an integral expression for the solution of (10).

1. $\begin{array}{llllllllll}\mathrm{a} & 3 & 2 . & \mathrm{a} & 4 & 3 . & \mathrm{a} & 5 & 4 . & 7 \\ \mathrm{~b} & 2 & & \mathrm{~b} & 5 & & \mathrm{~b} & 2 & & \\ \mathrm{c} & 5 & & & & & \mathrm{c} & 3 & & \end{array}$
