EXAM Partial Differential Equations (155010)

Wednesday, January 30, 2008, 09:00-12:00
Maybe a part of scores to 2.b, 4.c and 5.c has already been earned by homeworks. This score is marked by "," in the grading at the end of this exam.

1. Consider the linear first order PDE problem for $u=u(x, y)$

$$
2 u_{x}+3 u_{y}+8 u=0
$$

a) Give the characteristic equation and determine the characteristics.
b) Find a solution $u(x, y)$ of the PDE having values $u(x, x)=x^{4}$.
2.
a) Prove that the equation

$$
x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}+x u_{x}+y u_{y}=0
$$

is parabolic and find its canonical form.
b) Furthermore, find the general solution on the half plane $x>0$.
3. Let $u(x, t)$ be a solution of the wave equation

$$
u_{t t}-9 u_{x x}=0 \quad(-\infty<x<\infty, t>0)
$$

with Cauchy data

$$
u(x, 0)=u_{t}(x, 0)= \begin{cases}1, & \text { if }|x| \leq 2 \\ 0, & \text { if }|x|>2\end{cases}
$$

a) Use d'Alambert solution formula to calculate $u\left(0, \frac{2}{3}\right)$.
b) Explain why $u\left(0, \frac{2}{3}\right)$ is the maximum value of $u(x, t)$.
4. Assume that the function u is a solution of the diffusion equation $u_{t}=k u_{x x}$ for $0<x<L, t>0$.
a) Show that u satisfies the integral expression

$$
\frac{d}{d t} \int_{0}^{L} \frac{1}{2} u^{2}(x, t) d x=\left.k u(x, t) u_{x}(x, t)\right|_{x=0} ^{x=L}-k \int_{0}^{L} u_{x}^{2}(x, t) d x
$$

b) Show that the initial-boundary-value problem for the heat equation

$$
u_{t}=k u_{x x}, u(0, t)=u(L, t)=0, u(x, 0)=f(x), \text { for } 0 \leq x \leq L, t \geq 0
$$

with f a given function, can have only one solution.
(Hint: make use of a)).
c) Give the formal general solution as found by separation of variables for the problem in b).

5.

a) Derive the Laplace equation

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

for polar coordinates (r, θ) from its rectangular coordinates form

$$
u_{x x}+u_{y y}=0
$$

b) Solve the Dirichlet problem $\nabla^{2} u=0$ on the unit disk $x^{2}+y^{2} \leq 1$ subject to the boundary condition $u(x, y)=y^{2}$ for $x^{2}+y^{2}=1$.
c) Consider the Dirichlet problem for the disk $r<\rho$ with $u(\rho, \theta)=f(\theta)$. Suppose f is periodic of period 2π and is an odd function of θ on $[-\pi, \pi]$. Show that the solution $u(r, \theta)$ is also an odd function of θ. If f is an even function of θ, is the solution even in θ ?

Grading

1a) 2
2a) 4
3a) 3
4a) 3
5a) 2
b) 4
b) $\underline{3}$
b) 3
b) 3
b) 3
c) $\underline{3}$
c) $\underline{3}$

Total: $36+4=40$ points.

