Major (opleiding): \qquad

Exercise	01 (a)	(b)	02	03 (a)	(b)	04 or 05

Guidelines

- This is an open book exam: you may consult one (1) book-the course textbook or any other.
- You may also use your class (HC) notes, practice session (WC) notes, and homework assignments.
- Select and solve one of the two problems 04 and 05 ; working on both means the worst will be graded.
- Read the statement of each problem carefully or you may end up solving an entirely different problem!
- Theorems and formulas in the book may be used without proof, unless explicitly stated. Please make sure you mention which theorem/formula you are using every time.
- Formulas for the Fourier coefficients are assumed to be known. You do not need to prove them. Your only responsibility is to use the correct formula for your Fourier coefficients.
- If in doubt about anything, please do not hesitate to ask the proctor for a clarification.

1. Consider the first order, quasi-linear partial differential equation

$$
\begin{equation*}
U U_{x}(x, y)+U_{y}(x, y)=1 . \tag{1}
\end{equation*}
$$

(a) Determine the characteristics of (1), here meant as curves in the (x, y, U)-space.
(b) Is there a solution of (1) corresponding to the Cauchy data $U(x, x)=x / 2$ with $-1 \leq x \leq 1$? If there is, determine whether it is unique. If it is unique, find it; otherwise, provide two different solutions.
02. Consider the following initial-boundary value problem for the heat equation:

$$
\begin{align*}
& U_{t}(x, t)=U_{x x}(x, t), \quad \text { for } \quad 0 \leq x \leq 1 \quad \text { and } t>0 \\
& U_{x}(0, t)=U_{x}(1, t)=0, \quad \text { for } t>0 \tag{2}\\
& U(x, 0)=\sin ^{2}(\pi x), \quad \text { for } \quad 0 \leq x \leq 1
\end{align*}
$$

Separate variables to solve (2) (do not just copy the formula from the book) and calculate the maximum and minimum values of $U(x, t)$ over the region $[0,1] \times[0, \infty)$ on the (x, t)-plane. Show, also, that total heat is conserved, that is:

$$
\begin{equation*}
\int_{0}^{1} U(x, t) d x=\int_{0}^{1} U(x, 0) d x, \quad \text { for all } t \geq 0 . \tag{3}
\end{equation*}
$$

3. Consider the 1-D wave equation on the entire spatial axis,
$U_{t t}(x, t)=c^{2} U_{x x}(x, t), \quad$ with $\quad x \in \mathbb{R} \quad$ and $t>0$.
Here, c is a positive constant.
(a) Determine initial conditions $U(x, 0)=f(x)$ and $U_{t}(x, 0)=g(x)$ so that

$$
U(x, t)=(x+c t)^{3} .
$$

(b) The general solution $U(x, t)$ for (4) is the sum of two traveling waves: one traveling in the positive x-direction and another one traveling in the negative x-direction. Are there initial conditions such that the right-traveling wave is identically zero? That is, is it possible to find initial conditions for which the solution is a left-travelling wave?
04. Consider the Laplace equation in two dimensions,
$U_{x x}(x, y)+U_{y y}(x, y)=0, \quad$ where $\quad(x, y) \in \Omega$.
Here, Ω is the two-dimensional domain outside the unit disc,
$\Omega=\left\{(x, y) \mid x^{2}+y^{2}>1\right\}$.
The boundary of that domain is the unit circle,
$\partial \Omega=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$.
We write U for the unique smooth solution to (5) equipped with the boundary conditions
$U(x, y)=f(x, y), \quad$ for all $\quad(x, y) \in \partial \Omega$.
Write down a formula for U. For this problem, Poisson's formula for the solution inside the unit disc is assumed to be known.
[Hint: Pass from Cartesian coordinates (x, y) to polar coordinates (r, θ)-you may use the formula in the bookfyour notes for the Laplacian expressed in polar coordinates; you do not need to prove it. Then, define new coordinates (s, θ) with θ as above and $s=1 / r$. Rewrite the problem in terms of the coordinates (s, θ) and solve it.]
05. Consider the unique smooth solution to the following Dirichlet problem in a two-dimensional bounded domain Ω,

$$
\begin{aligned}
U_{x x}(x, y)+U_{y y}(x, y) & =0, \quad \text { where } \quad(x, y) \in \Omega, \\
U(x, y) & =f(x, y), \quad \text { for all } \quad(x, y) \in \partial \Omega .
\end{aligned}
$$

Additionally, let W be any twice continuously differentiable function defined in $\bar{\Omega}=\Omega \cup \partial \Omega$ and satisfying the same boundary condition: $W(x, y)=f(x, y)$, for all $(x, y) \in \partial \Omega$. Assign an energy to each such function W,
$E(W)=\frac{1}{2} \iint_{\Omega}|\nabla W|^{2} d A, \quad$ where $\quad \nabla W=\left(W_{x}, W_{y}, W_{z}\right)$.
Here, for any vector $A=\left(A_{1}, A_{2}, A_{3}\right)$, we write $|A|$ for its Euclidean length: $|A|=\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}}$. (Write $W=U+V$, for some V, and) show that U has the minimum energy among all such functions W-namely, $E(U)<E(W)$ for all $W \neq U$.

