Random Signals and Systems (157108)

Hajek's lecturenotes and additional course notes and your own notes & homework can be consulted (but other notes are not allowed)

Date: 14-04-2009 Place: Vrijhof, VR6 Time: 9:00–12:00

1. Suppose X, Y are random variables with X, $Y \in \{1, 2, 3\}$ and that its joint pmf p(x, y) is

 $\begin{array}{ll} p(1,1)=1/9, & p(2,1)=1/3, & p(3,1)=1/9, \\ p(1,2)=1/9, & p(2,2)=0, & p(3,2)=1/(18), \\ p(1,3)=0, & p(2,3)=1/6, & p(3,3)=1/9. \end{array}$

Are X and Y independent?

- 2. Let $\{Z_n\}_{n\in\mathbb{N}}$ be an iid sequence with $E(Z_n) = 0$ and $E(Z_n^2) = 1$. Let $X_0 = 0$ and $X_{n+1} := X_n + Z_n$ for n > 0. Is the process $\{X_n\}_{n\in\mathbb{N}}$ a martingale?
- 3. Let $Y = \int_0^2 X_t dt$ and assume $\{X_t\}_{t \in \mathbb{R}}$ is zero mean WSS with $R_X(\tau) = 1 |\tau|$ for $\tau \in [-1, 1]$ and zero elsewhere.
 - (a) Which proposition(s) in Hajek gaurantee that $Y = \int_0^2 X_t dt$ is well defined (in some sense)?
 - (b) Determine var(Y).
- 4. Let X and Y be independent exponential distributed random variables both with parameter λ . Let U = X + Y, V = X Y. Determine the joint pdf $F_{UV}(u, v)$.
- 5. Consider

$$f_{XY}(x, y) = \begin{cases} \frac{e^{-x/y} e^{-y}}{y} & \text{if } 0 < x < \infty, 0 < y < \infty\\ 0 & \text{elsewhere} \end{cases}$$

- (a) Determine $f_{X|Y}(x|y)$.
- (b) Determine E(X|Y).
- 6. Consider the discrete process $\{X_n\}_{n \in \mathbb{N}}$ with $X_0 = 0$ and

$$X_n = \frac{1}{2}X_{n-1} + W_n, \quad n > 0$$

where $\{W_n\}_{n\in\mathbb{N}}$ is a white noise process. Does $\lim_{n\to\infty} X_n$ exist in m.s. sense? (Referring to examples in Hajek is not allowed. You have to prove it from scratch.)

- 7. Suppose $\{X_t\}_{t \in \mathbb{R}}$ is zero mean WSS with correlation function R_X . Let $\alpha > 0$. Show that $P(|X(t + \tau) X(t)| \ge \alpha) \le 2(R_X(0) R(\tau))/\alpha^2$.
- 8. Suppose $\{X_n, Y_n\}_{n \in \mathbb{Z}}$ are zero mean jointly WSS stochastic processes with well defined spectral densities $S_X(\omega), S_Y(\omega)$. Are X_n and Y_k uncorrelated processes (meaning $C_{XY}(\tau) = 0 \forall \tau \in \mathbb{Z}$) if and only if $S_{X+Y}(\omega) = S_X(\omega) + S_Y(\omega)$ for all $\omega \in \mathbb{R}$?

problem:	1	2	3(a)	3(b)	4	5(a)	5(b)	6	7	8
points:	3	3	3	4	5	4	4	4	4	4

Exam grade is 1 + 9p/38. (Final grade may depend on homework.)