Random Signals and Systems (157108)

Hajek's lecturenotes and additional course notes and your own notes & homework can be consulted (but other notes are not allowed)

Date: 31-08-2009 Place: Citadel 228 ... Time: 9:00–12:00

- 1. Is the sample space Ω independent from itself?
- 2. Prove Hajek's Lemma 1.1.6(b), so for the case that $B_1 \supset B_2 \supset B_3 \cdots$.
- 3. Suppose X and Y are independent and let $f_X(x)$ and $f_Y(y)$ denote the respective probability density functions. Define U = X + Y, V = 2Y. Express the joint pdf $F_{UV}(u, v)$ in terms of f_X and f_Y .
- 4. Suppose $f_{XY}(x, y) = g(x y)h(y)$ for certain functions g and h.
 - (a) Show that $\int_{-\infty}^{\infty} g(x) dx \int_{-\infty}^{\infty} h(y) dy = 1$
 - (b) Express $f_{X|Y}(x|y)$ in terms of g and h.
- 5. Is Brownian motion mean square differentiable?
- 6. Suppose Y_1, Y_2, Y_3 are uncorrelated and zero mean and that $E Y_k^2 = k$. Suppose X is a stochastic variable such that $E XY_i = 1$. Determine the linear MMSE $h(Y_1, Y_2, Y_3)$ of X.
- 7. Let $\{W_t\}_{t\geq 0}$ be Brownian motion with $\sigma = 1$, and take $X_t = \int_0^t W_{\tau} / \sqrt{\tau} \, d\tau$ for t > 0.
 - (a) Is $X_t := \int_0^t W_\tau / \sqrt{\tau} d\tau$ well defined in mean square sense for $t \ge 0$?
 - (b) Determine $R_X(s, t)$ for $s, t \ge 0$.
- 8. Consider the differential equation

 $Y_t' + Y_t = U_t.$

Assume that U_t and Y_t and derivative Y'_t are m.s. continuous and jointly WSS.

- (a) Determine a relation between $R_{Y'Y}$, R_Y , R_{UY} . [Hint: mqultiply both sides of the differential equation with U_s and then take expectation of both sides.
- (b) Multiply both sides of the differential equation with Y_s and then take expectation of both sides.
- (c) Use the above to derive a differential equation that relates R_Y and R_U . [Hint: use that $R_{YY'} = -R'_Y$.]