UNIVERSITEIT TWENTE.

Applied Analysis Group Department of Applied Mathematics Christoph Brune

Course: Applied Functional Analysis (191506302)

Date: Tuesday, Jan 30, 2018 Time: 8:45-11:45

- An explanation to every answer is required.
- · You can make use of a calculator.
- (Part of) the scores to exercises 1(c), 3(b) and 5(d) may be earned by homeworks, see the underlined numbers in the table at the end of the exam.
- 1. The normed vector space of all bounded real sequences is denoted by ℓ^{∞} , its norm by

$$||a||_{\infty} = \sup_{n \in \mathbb{N}} |a_n|$$
, where $a = (a_1, a_2, a_3, \cdots)$ with $a_n \in \mathbb{R}$.

- (a) Check the triangle inequality for $||\cdot||_{\infty}$.
- (b) Give an example of two vectors $a, b \in \ell^{\infty}$ for which

$$||a+b||_{\infty}^{2} + ||a-b||_{\infty}^{2} = 2 ||a||_{\infty}^{2} + 2 ||b||_{\infty}^{2}$$

does not hold. What conclusion for ℓ^{∞} can be drawn from such an example?

We define $c_0 := \{a \in \ell^{\infty} | \lim_{n \to \infty} a_n = 0\}$ to be the linear subspace of all sequences tending to 0.

- (c) Show that c_0 is a closed subset of ℓ^{∞} .
- **2.** Let $H = \ell^2$ with the standard inner product and the standard basis of unit vectors $(e_n)_{n \in \mathbb{N}}$. Define the vectors $f_n := e_n + 2e_{n+2}, n \in \mathbb{N}$. Thus

$$f_1 = (1, 0, 2, 0, \dots), \quad f_2 = (0, 1, 0, 2, 0, \dots), \quad f_3 = (0, 0, 1, 0, 2, 0, \dots), \quad \dots$$

and let $S := \{ f_n \mid n \in \mathbb{N} \}.$

- (a) Find a maximal orthonormal system of $F := S^{\perp}$.
- (b) Define $x := e_1 + e_2$ and compute the distance between x and F, so what is $\inf_{y \in F} ||x y||$?
- **3.** Let $C^1[-1,1]$ denote the space of complex-valued, differentiable functions $f:[-1,1] \to \mathbb{R}$ with continuous derivative f' and f(-1) = 0. Introducing the inner product

$$\langle f, g \rangle = \int_{-1}^{1} (f(x)\overline{g(x)} + f'(x)\overline{g'(x)}) dx$$

we get the Sobolev space H^1 by completing $C^1[-1,1]$.

- (a) Prove that a Cauchy sequence (f_n) in this inner product space $\mathcal{C}^1[-1,1]$ converges uniformly to a continuous function on [-1,1].
- (b) Show that $\varphi: H^1 \to \mathbb{C}$ with $\varphi(f) = f(0)$ is a well-defined bounded linear map.

4. Let $A: L^2(0,1) \to L^2(0,1)$ be the operator on the complex Hilbert space $L^2(0,1)$, defined by

$$Af(x) = \int_0^x f(t) \ dt \qquad \text{ for all } f \in L^2(0,1).$$

- (a) Show that A does not have eigenvalues.
- (b) Determine A^* .
- (c) Prove that AA^* is an integral operator of the type

$$AA^*g(x)=\int_0^1 k(x,y)g(y)\ dy \qquad \text{ for all } g\in L^2(0,1).$$

(d) It has been proved that the eigenvalues of AA^* are

$$\lambda_n = \frac{1}{\pi^2} \frac{4}{(2n+1)^2}$$
 with $n \in \mathbb{Z}$.

Determine the spectrum $\sigma(AA^*)$ of AA^* .

5. Let $\alpha = (\alpha_n)_{n=0}^{\infty}$ be a sequence of complex numbers. Define

$$\mathcal{D} = \left\{ x \in \ell^2(\mathbb{C}) \mid \sum_{k=0}^{\infty} (|\alpha_k x_{2k}|^2 + |\alpha_k x_{2k+1}|^2) < \infty \right\}$$

and the operator $T: \mathcal{D} \to \ell^2(\mathbb{C})$ by

$$Tx = (\alpha_0 x_1, \alpha_0 x_0, \alpha_1 x_3, \alpha_1 x_2, \cdots)$$

- (a) Show that \mathcal{D} is dense in $\ell^2(\mathbb{C})$.
- (b) Show that T is a closed operator.
- (c) Show that T is compact in case $\lim_{n\to\infty} \alpha_n = 0$.

Now, as a special case, we assume that $\alpha \in \ell^{\infty}(\mathbb{R})$ is given by $\alpha_0 = 0$ and $\alpha_n = \frac{1}{n}$ for $n \in \mathbb{N}$.

(d) Determine the spectral representation of T in this case.

Grading scheme:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \textbf{1.} & \text{(a) 2} & \textbf{2.} & \text{(a) 3} & \textbf{3.} & \text{(a) 3} & \textbf{4.} & \text{(a) 2} & \textbf{5.} & \text{(a) 2} \\ \hline & \text{(b) 2} & \text{(b) 3} & \text{(b) 3} & \text{(b) 2} & \text{(b) 2} \\ & \text{(c) 2} & \text{(c) 2} & \text{(c) 2} \\ & & & & & & & & & & & & & & & \\ \hline \end{array}$$

Total: 36 + 4 = 40 points