UNIVERSITEIT TWENTE.

Applied Analysis Group Dep. of Applied Mathematics Christoph Brune

Course: Applied Functional Analysis (191506302)

Date: Tuesday, Jan 29, 2018 Time: 8:45-11:45

- An explanation to every answer is required. You can make use of a calculator.
- (Part of) the scores to exercises **3**(c), **5**(c) and **6** will be filled with a maximum of 9 points earned by the homeworks. See the underlined numbers in the grading scheme at the end.

Good luck and success!

Exercise 1 [3pts]. Let an operator $A: \ell^2(\mathbb{C}) \to \ell^2(\mathbb{C})$ be defined as A:=R+2L, where R denotes a right shift and L denotes a left shift of vector elements, that is

$$A(a_1, a_2, \cdots) := (2a_2, a_1 + 2a_3, a_2 + 2a_4, \cdots)$$
.

- (a) Compute the vector A^*e_2 , where A^* denotes the adjoint and e_2 is the second standard basis vector in $\ell^2(\mathbb{C})$.
- (b) We know that ||R|| = ||L|| = 1. Compute the operator norm of A.

Exercise 2 [9pts]. Let the operator $T: \ell^2(\mathbb{C}) \to \ell^2(\mathbb{C})$ be defined by:

$$Te_{2k-1} = \frac{1}{k}e_{2k-1} + \frac{i}{k}e_{2k}$$

$$Te_{2k} = -\frac{i}{k}e_{2k-1} + \frac{1}{k}e_{2k}, \quad k = 1, 2, \cdots$$

where e_n denotes the *n*-th standard basis vector in $\ell^2(\mathbb{C})$.

- (a) Compute the adjoint of T.
- (b) Show that T is compact.
- (c) Find all the eigenvalues and compute the spectrum of T.

Exercise 3 [7pts]. By $L^2(0, 2\pi)$ we denote the real vector space of all (classes of) real square-integrable functions on $(0, 2\pi)$, endowed with the usual inner product

$$(f,g) = \int_0^{2\pi} f(x)g(x)dx .$$

Let D be the closed linear subspace given by

$$D := \left\{ f \in L^2(0, 2\pi) \mid \int_0^{2\pi} f(x) dx = 0 \right\} .$$

- (a) Determine D^{\perp} , the so-called orthoplement of D in $L^2(0,2\pi)$.
- (b) Find the best approximation in D to $g(x) := x^2 + x$.
- (c) Give a maximal orthonormal system (MOS) for the subspace D.

Exercise 4 [6pts]. In the space of bounded real sequences, denoted by ℓ^{∞} , we define a linear subspace ℓ_0^{∞} which consists of the sequences converging to zero.

- (a) Show that the subspace ℓ_0^{∞} is closed.
- (b) The quotient space is given by $Q := \ell^{\infty}/\ell_0^{\infty}$ and equipped with the quotient space norm

$$||x + \ell_0^{\infty}||_Q := \inf\{ ||x + y||_{\ell^{\infty}} \mid y \in \ell_0^{\infty} \}.$$

Show that the dual space of this quotient space, Q^* , is nonzero.

Exercise 5 [8pts]. Let $A: L^2[0,1] \to L^2[0,1]$ be the kernel operator $Af(x) := \int_0^1 k(x,y)f(y)dy$ with kernel function

$$k(x,y) := \left\{ \begin{aligned} y(1-x) & \text{ for } \ 0 \leq y \leq x \leq 1 \\ x(1-y) & \text{ for } \ 0 \leq x \leq y \leq 1 \end{aligned} \right..$$

It is known that the eigenvalues of A are the numbers $\lambda_n = \frac{1}{n^2\pi^2}$ with corresponding eigenfunctions

$$g_n(x) = \frac{1}{\sqrt{2}}\sin(n\pi x)$$
 for $n = 1, 2, 3, \dots$

(a) Prove that for a given $g \in L^2[0,1]$ the solution of

$$\begin{cases} u''(x) = -g(x) & \text{for } x \in (0,1) \\ u(0) = 0, \ u(1) = 0 \end{cases}$$

is given by u = Ag.

(b) Show that for $\lambda \in \mathbb{C}, \lambda \neq 0$ and given $g \in L^2[0,1]$ we have

$$\begin{cases} u'' + \lambda u = g \\ u(0) = 0, \ u(1) = 0 \end{cases} \iff (A - \frac{1}{\lambda} \mathrm{Id}) u = \frac{1}{\lambda} Ag .$$

(c) Determine for which $\lambda \in \mathbb{C}$ the problem

$$\begin{cases} u'' + \lambda u = g \\ u(0) = 0, \ u(1) = 0 \end{cases}$$

has a unique solution for a given g, and describe this solution in terms of g and a maximal orthonormal system $\{g_i\}$.

Exercise 6 [3pts]. Let F be a closed subspace of the Hilbert space H and $P \in BL(H)$ the orthogonal projection onto F. Given a Banach space G, show that the linear operator $T: H \to G$ is bounded, if and only if, the restrictions $T_{|F|}: F \to G$ and $T_{|F^{\perp}}: F^{\perp} \to G$ are both bounded.

Grading scheme:

Total: 36 points